Pain is a subject of significant scientific and clinical interest. This has resulted both from realistic rodent models, and the publication of imaging, psychological and pharmacological studies in humans. Investigators studying rodents refer to anatomical and physiological studies in non-human primates to make their results relevant to humans. Psychophysical and pharmacological studies in humans are interpreted in terms of anatomical and physiological studies in animals; primarily evidence from rodents and cats. There are significant differences in pain mechanisms between these species and primates. Over 20 years of imaging studies have demonstrated the activation of human cortical and subcortical structures in response to painful stimuli. Interpretation of these results relies upon an understanding of the anatomy and physiology of these structures in primates. Jones, Lenz, Casey and Willis review the anatomy and physiology of nociception in monkeys and humans, and provide a firm basis for interpreting studies in humans.
Author(s): Frederick A. Lenz, Kenneth L. Casey, Edward G. Jones, William D. Willis
Edition: 1
Year: 2010
Language: English
Pages: 648
Half-title......Page 3
Title......Page 5
Copyright......Page 6
Contents......Page 7
Preface......Page 9
References......Page 12
Dorsal roots, somatic sensation and lateralization in the spinal cord......Page 13
The anterolateral funiculus and Gower's tract......Page 15
Tract tracing by the Marchi method......Page 17
Unmyelinated fibers and pain......Page 21
Foerster and the cellular origins of the anterolateral system......Page 22
Thalamic terminations of spinothalamic fibers......Page 25
Trigeminothalamic projections......Page 28
Before Cajal......Page 30
Cajal......Page 32
After Cajal......Page 40
Rexed......Page 45
The caudal spinal trigeminal nucleus......Page 48
Cellular origins of spinothalamic tract fibers......Page 49
Early modern studies of spinothalamic and spinoreticular projections......Page 50
The spinoreticular projection......Page 63
References......Page 65
Types of nociceptors......Page 76
Muscle nociceptors......Page 77
Sensory transduction in nociceptors......Page 78
Sensitization of nociceptors......Page 79
Lamina I......Page 80
Lamina II......Page 83
Lamina III......Page 86
Lamina IV......Page 87
Lamina VI......Page 88
Terminations of afferent fibers......Page 89
Primary afferent fibers and their terminations......Page 93
Intrinsic systems......Page 99
Calcium binding proteins and other substances......Page 102
The spinothalamic system......Page 104
Fiber trajectories......Page 107
The spinocervicothalamic system......Page 108
The postsynaptic dorsal column system......Page 110
Reticular formation......Page 111
Midbrain......Page 116
Hypothalamus......Page 118
The ventral posterior complex......Page 120
Anterior and posterior divisions of VPL......Page 123
Nuclei anterior to the ventral posterior complex......Page 125
Histochemistry and immunocytochemistry of the ventral thalamic nuclei......Page 133
Posterior and limitans-suprageniculate nuclei......Page 136
The posterior-to-anterior extent of the calbindin matrix in and around the ventral posterior complex......Page 138
Intralaminar and submedial nuclei......Page 141
Posterior nuclei and ventral posterior complex......Page 144
Intralaminar terminations......Page 145
The submedial nucleus......Page 147
A separate thalamic relay for high-threshold neurons of lamina I of the dorsal horn?......Page 148
The primary somatosensory cortex......Page 153
The second somatic sensory and adjacent areas......Page 155
Cortical targets of the posterior nucleus and adjacent regions......Page 158
The human parainsular regions......Page 159
Cortical and striatal projections of the intralaminar nuclei......Page 161
Cortical projections of the basal ventral medial nucleus: gustatory and visceral pathways......Page 162
Endnote......Page 164
References......Page 165
Introduction......Page 208
Antidromic identification......Page 209
Axonal conduction velocities......Page 213
Receptive fields......Page 214
Somatotopic organization......Page 218
Antidromic identification......Page 222
Receptive fields......Page 224
Monkey spinomesencephalic neurons......Page 225
Receptive fields......Page 226
The monkey spinohypothalamic tract......Page 227
Axonal conduction velocities......Page 228
Antidromic identification......Page 230
Monkey postsynaptic dorsal column neurons......Page 231
Receptive fields......Page 232
Somatotopic organization and axonal projections......Page 233
Antidromic identification......Page 234
Receptive fields......Page 235
Somatotopic organization......Page 237
References......Page 238
Introduction......Page 249
Nociceptive cells projecting to or located within brainstem and midbrain......Page 250
Stimulation of the midbrain......Page 253
Medial and intralaminar nuclei of thalamus......Page 254
Electrical stimulation in the medial and intralaminar thalamus......Page 257
Lateral thalamus......Page 258
Lateral thalamic nuclei: neuronal activity......Page 259
Location of cells responding to noxious stimuli in primate lateral thalamus......Page 265
Lateral thalamic nuclei: patterned activity mediating pain and thermal sensations......Page 268
Patterned spontaneous (LTS) bursting in lateral thalamus......Page 272
Lateral thalamic nuclei: quality of sensations evoked by stimulation within different subnuclei......Page 274
The sensations evoked by patterned stimulation in the region of human Vc......Page 278
Lateral thalamic nuclei: inputs from the viscera......Page 281
The parasylvian cortex and the memory of pain......Page 285
Lateral thalamic nuclei: effects of lesions......Page 286
Dimensions of lesions required to impair perception......Page 289
Implications for the disinhibition hypothesis of central pain......Page 291
Primary somatosensory cortex......Page 292
Parasylvian cortex......Page 295
Medial frontal (MF)......Page 297
Grading of cortical response with stimulus intensity......Page 300
Attention and cortical pain-related activity......Page 301
Classification of cortical areas by activity related to attention to painful stimuli......Page 304
Stimulation studies of cortex......Page 305
Lesioning and synchrony studies of cortex......Page 307
Lesions of the parasylvian cortex......Page 308
Lesions of SI......Page 310
Analysis of synchrony between cortical pain-related areas......Page 313
References......Page 316
Introduction......Page 341
Temporal and spatial features of the hemodynamic response......Page 342
Mechanisms of the hemodynamic response......Page 343
Neurovascular coupling......Page 345
Neuronal activity and the hemodynamic response......Page 349
Detecting the hemodynamic signal: fMRI......Page 351
Positron emission tomography activation studies......Page 353
Single photon emission computerized tomography activation studies......Page 355
Metabolic and receptor binding studies......Page 356
Analysis of functional imaging......Page 357
The resting brain and deactivations......Page 359
Components of pain......Page 361
Other considerations specifically related to pain......Page 363
A brief historical background and overview......Page 365
Intensity......Page 367
Location and somatotopy......Page 375
Temporal characteristics......Page 377
Summary......Page 383
Conceptual considerations......Page 386
Separating the hedonic and sensory components in functional imaging......Page 387
The cognitive component of pain......Page 392
Expectation and attention......Page 395
Placebo analgesia......Page 398
Sex differences......Page 404
Skin pain and itch......Page 407
Muscle pain......Page 410
Visceral pain......Page 414
Summary......Page 417
References......Page 418
Introduction......Page 435
Inhibition of monkey spinothalamic tract cells induced by stimulation in the periaqueductal gray or the ventral medial medulla oblongata......Page 444
Effects of stimulation of the ventral posterior thalamus and the sensorimotor cortex on monkey STT cells......Page 449
Effects of stimulation in the nucleus raphe magnus on unidentified interneurons in the monkey spinal cord......Page 452
Descending control of monkey and cat spinoreticular and spinomesencephalic tract neurons......Page 455
Descending control of spinocervical tract and lateral cervical nucleus neurons......Page 456
References......Page 457
Clinical characteristics of peripheral neuropathic pain......Page 465
Peripheral neuropathic pain in primates......Page 466
Genetic factors in peripheral neuropathic pain......Page 467
Physiology of peripheral neuropathic pain in primate models: behavior and peripheral nerve activity......Page 472
Chung model: behavior and activity of fibers in the peripheral nerve fibers and STT cells......Page 473
Central pain in primates......Page 478
Clinical features of SCI central pain......Page 479
Clinical features of CPSP......Page 481
Anatomy of lesions resulting in CPSP......Page 485
Other clinical conditions with central pain......Page 487
Mechanism of ongoing pain in patients with central pain......Page 488
Mechanisms of tactile allodynia in central pain......Page 490
Neurochemical studies......Page 492
Motor cortex and central pain......Page 493
Involvement of the STT in the mechanism of central pain......Page 495
Animal models......Page 499
Cold allodynia and the disinhibition hypothesis of central pain......Page 502
Thalamic low-threshold spike (LTS) bursting activity in central pain......Page 503
Evidence for ipsilateral mechanisms of stroke pain......Page 507
Mechanisms of pain and sensitization following peripheral injury......Page 509
Peripheral sensitization......Page 511
Cutaneous burn damage......Page 514
Intradermal injection of capsaicin......Page 516
Neurotransmitter receptors that trigger central sensitization......Page 519
Effects of agents that facilitate or block intracellular signaling pathways......Page 522
Phosphorylation of proteins by protein kinases activated during central sensitization......Page 527
Possible equivalence of central sensitization and spinal cord long-term potentiation......Page 529
References......Page 530
Introduction......Page 552
Neuropathic pain......Page 553
Imaging studies of resting neuropathic pain......Page 554
Structural changes in chronically painful conditions......Page 558
Imaging allodynia and hyperalgesia......Page 561
Spontaneous ongoing pain......Page 565
Modulation and treatment of neuropathic pain......Page 567
Summary......Page 572
Other chronically painful conditions......Page 574
Back pain......Page 575
Arthritis......Page 577
Headache......Page 579
Orofacial pain conditions......Page 581
Fibromyalgia......Page 584
Irritable bowel syndrome......Page 587
Conversion and somatoform disorders......Page 591
Summary of chronic (non-neuropathic) pain imaging......Page 592
Concluding summary......Page 593
References......Page 594
Cordotomy and myelotomy......Page 602
Indications, results and complications......Page 604
Spinal cord stimulation: mechanisms......Page 606
Indications, results and complications......Page 607
Mechanism of analgesia produced by PAG stimulation......Page 610
Pharmacologic tests to predict the effectiveness of PAG versus Vc DBS stimulation for treatment of chronic pain......Page 611
Mechanism of analgesia produced by Vc DBS stimulation......Page 612
Indications, results and complications......Page 613
Motor cortex stimulation......Page 615
Mechanisms of motor cortex stimulation......Page 616
Indications, results and complications......Page 617
Functional imaging......Page 618
Neurophysiology......Page 619
The effect of ACC lesions upon pain-related behaviors or pain perception......Page 621
Indications, results and complications......Page 622
References......Page 624
Index......Page 636