Signal processing is a broad and timeless area. The term "signal" includes audio, video, speech, image, communication, geophysical, sonar, radar, medical, and more. Signal processing applies to the theory and application of filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals. Handbook of Formulas and Tables for Signal Processing a must-have reference for all engineering professionals involved in signal and image processing. Collecting the most useful formulas and tables - such as integral tables, formulas of algebra, formulas of trigonometry - the text includes:oMaterial for the deterministic and statistical signal processing areasoExamples explaining the use of the given formulaoNumerous definitionsoMany figures that have been added to special chaptersHandbook of Formulas and Tables for Signal Processing brings together - in one textbook - all the equations necessary for signal and image processing for professionals transforming anything from a physical to a manipulated form, creating a new standard for any person starting a future in the broad, extensive area of research.
Author(s): Alexander D. Poularikas
Series: The electrical engineering handbook series
Edition: 1
Publisher: CRC Press; Springer :, IEEE Press
Year: 1999
Language: English
Pages: 865
City: Boca Raton, Fla. :, [New York, NY]
The Handbook of Formulas and Tables for Signal Processing......Page 2
About The Author......Page 6
PREFACE......Page 7
Contents......Page 8
1.1 Definitions and Series Formulas......Page 12
1.2 Orthogonal Systems and Fourier Series......Page 17
1.3 Decreasing Coefficients of Trigonometric Series......Page 18
1.5 Two-Dimensional Fourier Series......Page 19
Examples......Page 20
References......Page 22
2.1.2 One-Sided Inverse Laplace Transform......Page 24
2.1.4 Two-Sided Inverse Laplace Transform......Page 25
2.2.2 Methods of Finding the Laplace Transform......Page 26
2.3.2 Methods of Finding Inverse Laplace Transforms......Page 27
2.4.1 F(w) from F(s)......Page 28
TABLE 2.2 Table of Laplace Operations......Page 29
TABLE 2.3 Table of Laplace Transforms......Page 30
References......Page 46
1.2 Inversion in the Complex Plane......Page 47
Solution......Page 48
Solution......Page 49
Solution......Page 50
1.3 Complex Integration and the Bilateral Laplace Transform......Page 53
Solution......Page 54
3.1.1.1 Fourier Transform......Page 57
3.1.1.2......Page 58
3.1.2.1 Properties of Fourier Transform......Page 59
3.1.3.1 Graphical Representations of Some Fourier Transforms......Page 60
References......Page 84
Example 3.4......Page 85
4.1.2 Properties......Page 88
4.2.2 Properties of Two-Dimensional Discrete-Time Fourier Transform......Page 90
References......Page 91
Example......Page 92
Example......Page 93
Example 5.2......Page 96
5.2.2 Properties......Page 97
5.3.2 Properties......Page 98
Example 5.6......Page 101
Example 5.9......Page 102
Example 5.11......Page 103
5.5.7 The Function d(a1x + b1y + c1, a2x + b2y + c2): From (5.5.5)......Page 104
Example 5.14......Page 105
References......Page 106
6.1.3 Region of Convergence for One-Sided Z-Transform......Page 108
6.1.4 Table of One-Sided Z-Transform Properties......Page 109
6.2.1 Definitions......Page 110
6.2.3 Properties of Two-Sided Z-Transform......Page 111
6.3 Inverse Z-Transform......Page 112
6.4 Positive-Time Z-Transform Tables......Page 116
References......Page 122
Example 6.3......Page 123
Example 6.4......Page 124
Example 6.6......Page 125
Example 6.9......Page 126
Example 6.10......Page 127
Example 6.11......Page 128
Example 6.13......Page 129
7.2.1 Equivalent Noise Bandwidth......Page 131
7.3.2 Rectangle (Dirichlet) Window......Page 134
7.3.3 Triangle (Fejer, Bartlet) Window......Page 135
7.3.4 cosa (t) Windows......Page 136
7.3.6 Hamming Window......Page 137
7.3.8 Blackman Window......Page 138
7.3.9 Harris-Nutall Window......Page 139
7.3.12 Riemann Window......Page 140
7.3.14 Cosine Taper (Tukey) Window......Page 141
7.3.15 Bohman Window......Page 142
7.3.17 Hann-Poisson Window......Page 143
7.3.18 Cauchy (Abel, Poisson) Window......Page 144
7.3.20 Dolph-Chebyshev Window......Page 145
7.3.21 Kaiser-Bessel Window......Page 146
7.3.23 Highest Sidelobe Level versus Worst-Case Processing Loss......Page 147
References......Page 148
8.1.3 Region of Convergence (ROC)......Page 150
8.1.7 Sequences with Support Everywhere......Page 151
8.2.1 Properties of the Z-Transform......Page 152
8.3.1 Inverse Z-Transform......Page 153
8.5.4 Theorem 8.5.1.4 (DeCarlo, 1977; Strintzis, 1977)......Page 155
Example 8.1......Page 156
Example 8.3......Page 157
Example 8.4 (inverse integration)......Page 158
Binomial Coefficients......Page 160
Generalized Mean......Page 162
Triangle Inequalities......Page 163
9.3.3 Theorems on Prime Numbers......Page 164
9.3.9 Diophantine Equations......Page 165
9.5.1 Algebraic Equation......Page 168
9.5.7 Quadratic Equations......Page 169
9.5.9 Binomic Equations......Page 170
9.7.1 Definitions......Page 171
9.8.2 l’Hospital’s Rules......Page 172
9.9.2 Integration Properties......Page 173
9.9.4 Integrals of Rational Algebraic Functions (constants of integration are omitted)......Page 174
9.9.5 Integrals of Irrational Algebraic Functions......Page 175
9.9.6 Exponential, Logarithmic, and Trigonometric Functions......Page 177
9.9.9 Improper Integrals......Page 178
Example......Page 180
9.12 Convergence of Infinite Series......Page 181
9.9.13 Properties of Stieltjes Integrals......Page 179
9.13.2 Power Series......Page 182
9.13.5 Order Concepts......Page 183
9.14 Sums and Series......Page 184
9.15 Lagrange’s Expansion......Page 186
9.16.4 Christoffel-Darboux Formula n......Page 187
9.17.1 Hilbert Space......Page 188
9.17.4 Countably Infinite......Page 189
10.1.2 Pulse Function......Page 191
10.1.6 Sinc Function......Page 192
10.1.10 Exponentially Decaying Cosine Function......Page 193
10.1.13 Cotangent Function......Page 194
10.1.16 Arcsine Function......Page 195
10.1.19 Parabola Function......Page 196
10.1.22 Cubical Parabola......Page 197
10.2.3 Real Exponential Sequence......Page 198
10.2.6 Exponentially Decaying Cosine Function......Page 199
10.3.2 The Pulse Function......Page 200
10.3.5 The Gaussian Function......Page 201
10.3.6 The Sinc Function......Page 202
11.1.2 Discrete Fourier Transform of Sampled Functions......Page 204
11.3.2 DFT of Cyclic Convolution (see Section 11.3.1)......Page 205
Program 11.1: Radix-2 DIF FFT......Page 206
Program 11.2: Radix-2 DIT FFT......Page 207
Program 11.3: Split-Radix FFT Without Table Look-up......Page 209
Program 11.4: Split–Radix with Table Look–up......Page 213
Program 11.5: Inverse Split–Radix FFT......Page 218
Program 11.6: Prime Factor FFT......Page 223
Program 11.7: Real–Valued Split–Radix FFT......Page 227
Program 11.8: Inverse Real–Valued Split–Radix FFT......Page 231
References......Page 235
12.1.2 Filter Transfer Function......Page 237
12.2.1 Definition of Butterworth Low-Pass Filter......Page 238
12.4.4 Butterworth Normalized Low-Pass Filter......Page 239
12.4.5 Butterworth Filter Specifications (see also Figure 12.1)......Page 240
Solution:......Page 241
12.5.2 Recursive Formula for Chebyshev Polynomials......Page 242
12.5.3 Table 12.2 gives the first ten Chebyshev polynomials......Page 243
12.5.6 Pole Location of Chebyshev Filters......Page 244
Left-Hand Poles for the Transfer Function......Page 245
Solution......Page 246
12.6.3 Attenuation......Page 249
12.7.2 Properties of the Rational Function Rn(w)......Page 250
12.7.4 Steps to Calculate the Elliptic Filter......Page 251
Steps......Page 253
Example 12.3 Requirements for an Elliptic Filter:......Page 255
References......Page 256
13.1.2.1 Transform of Derivatives......Page 258
13.1.2.7 Convolution......Page 259
13.2.1 Definition FST......Page 260
13.2.2.7 Integration in the t-Domain......Page 261
Exponential Function......Page 262
13.3.2 Discrete Cosine Transform (DCT)......Page 263
13.5.3 Scaling......Page 264
13.6.2 FST of Real Data Sequence......Page 265
13.7.2 Fourier Cosine Transform Pairs......Page 266
13.8.2 Fourier Sine Transform Pairs......Page 269
13.9 Notations and Definitions......Page 271
References......Page 273
14.1.2 Definition of the Pair with Use of f (units: s –1 )......Page 275
14.1.5 Signs of the cas Function......Page 276
14.2.1 Relationship to Fourier Transform......Page 277
14.3.2 Phase Spectrum......Page 278
14.4.6 Modulation......Page 279
14.4.9 Product......Page 280
14.4.14 Hartley Transform Properties......Page 281
14.5.2 Example (Shifted Gaussian)......Page 282
14.5.7 Example (Cosine)......Page 283
14.5.12 Example......Page 284
14.7 Tables of Fourier and Hartley Transforms......Page 285
14.8.2 Relation to Fourier Transform......Page 287
14.9.3 A C Program for Fast Hartley Transforms......Page 288
References......Page 293
Convolution form representation......Page 295
15.1.2 Analytic Signal......Page 296
15.2.2 Fourier Spectrum of the Analytic Signal......Page 297
15.4.1 Hilbert Transform of Period Functions......Page 298
15.5.1 Hilbert Transform Properties......Page 299
15.5.3 Parseval’s Theorem......Page 300
15.5.6 Hilbert Transform Pairs......Page 301
15.6.3 Fourier Transform of Hilbert Transform......Page 305
15.7.2 Table of Hilbert Transform of Hermite Polynomials......Page 306
15.7.4 Hilbert Transform of Orthonormal Hermite Functions......Page 307
15.9.1 Hilbert Transform of Bessel Function:......Page 308
15.10.1 Instantaneous Angular Frequency......Page 309
15.14.4 Shifting Property......Page 313
Equivalent Notation......Page 316
Amplitude of Hilbert Transformer......Page 318
15.17.1 IIR Ideal Hilbert Transformer......Page 319
Example......Page 320
15.12.1 Causal Systems......Page 310
15.13.3 DHT of a Sequence x(i) in the Form of Convolution......Page 311
15.14.2 Discrete Hilbert Transform......Page 312
15.15.3 All-Pass Filters......Page 314
15.16.2 Ideal Hilbert Transformer With Linear Phase Term......Page 317
References......Page 321
16.1.2 Other Interpretation......Page 323
16.1.4 Rotated Coordinate System (see Figure 16.4)......Page 325
Example......Page 326
16.3.3 Similarity......Page 327
16.3.8 Linear Transformation......Page 328
Example......Page 329
Example......Page 330
Example......Page 331
Example......Page 332
Example......Page 334
Example......Page 335
16.7.1 N-Dimensional Radon Transform with its Properties......Page 336
16.8.4 Abel Transform Pairs......Page 337
16.9.1 Back Projection......Page 338
16.9.5 Filter of Backprojection......Page 339
16.10.1 Abel and Radon Pairs......Page 340
References......Page 343
Example......Page 345
Example (see 17.1.3)......Page 346
17.2.6 Moment......Page 347
17.3.6 Example......Page 348
17.4.3 Example......Page 349
17.5 Hankel Transforms of Order Zero......Page 350
References......Page 353
18.1.3 Relation to Fourier Transform......Page 355
18.2.6 Multiplication by a Power of ln t......Page 356
18.2.10 Multiplicative Convolution......Page 357
18.3.4 Example......Page 358
18.4.5 Functional Relations......Page 359
18.4.8 Riemann’s Zeta Function......Page 360
18.5.1 Tables of Mellin Transform......Page 361
References......Page 363
19.1.2 Definition of WD in Frequency Domain......Page 366
19.2.1 Conjugation......Page 367
19.2.7 Ordinates......Page 368
19.2.13 Time Marginal......Page 369
19.2.16 Total Energy......Page 370
19.2.20 Convolution Covariance •......Page 371
19.2.21 Modulation Covariance......Page 372
19.2.25 Group Delay......Page 373
19.2.30 Chirp Convolution......Page 374
19.2.32 Moyal’s Formula......Page 375
19.2.36 Analytic Signals......Page 376
19.4.1 WD Properties and Ideal Time-Frequency Representations......Page 377
19.5.1 Table Signals with Closed-Form Wigner Distributions (WD) and Ambiguity Functions (AF) (See.........Page 381
19.7.1 Cohen’s Class......Page 384
19.7.3 Table of Time-Frequency Representations of Cohen’s Class......Page 387
19.10.1 WD of Discrete-Time Signals x(n) and g(n)......Page 389
19.11.5 Inner Product......Page 392
19.11.9 Inverse Transform in Time......Page 393
19.11.12 Inner Product of Signals......Page 394
19.11.16 Multiplication in the Time Domain......Page 395
19.12.1 Table of WD of Discrete-Time Functions......Page 396
References......Page 399
20.1 Basic Concepts......Page 401
20.3.1 Continuous Function......Page 402
20.3.7 Rules of Differentiation......Page 403
20.5.1 Complex Exponential Function......Page 404
20.5.8 Other Hyperbolic Relations......Page 405
Example......Page 406
20.7.3 Cauchy First Integral Theorem......Page 407
20.7.8 Derivative of an Analytic Function W(z)......Page 408
Example......Page 409
20.8.1 Laurent Theorem......Page 410
Solution......Page 412
20.9.3 Nonessential Singularity (pole of order m)......Page 413
Example......Page 414
20.10.3 Theorem......Page 415
20.10.5 Residue with Nonfactorable Denominator......Page 416
20.11.3 Maximum Value Over a Path, Theorem......Page 417
20.11.5 Theorem (Mellin 1)......Page 418
Solution......Page 419
20.12.1 Definition of the Bromwich Contour......Page 420
20.12.2 Finite Number of Poles......Page 421
Solution......Page 422
20.13.1 Definition of Branch Points and Branch Cuts......Page 423
Solution......Page 424
Solution......Page 426
Solution......Page 427
Example......Page 428
Solution......Page 429
20.14.1 Evaluation of the Integrals of Certain Periodic Functions......Page 430
20.14.2 Evaluation of Integrals with Limits......Page 431
20.14.3 Certain Infinite Integrals Involving Sines and Cosines......Page 432
Solution......Page 433
Solution......Page 434
Solution......Page 435
Solution......Page 436
Solution......Page 437
Example......Page 438
Solution......Page 439
Solution......Page 440
20.15.1 Cauchy Principal Value......Page 441
20.16 Integral of the Logarithmic Derivative......Page 442
References......Page 445
21.1.4 Recursive Formulas......Page 447
21.1.5 Legendre Differential Equation......Page 448
21.1.9 Series Expansion......Page 449
Example......Page 450
Example......Page 451
Example......Page 452
21.3.3 Properties......Page 453
21.4.2 Second Stieltjes Theorem......Page 454
21.5 Table of Legendre and Associate Legendre Functions......Page 455
References......Page 458
22.1.3 Generating Function......Page 460
22.3 Integral Representation......Page 461
Example......Page 462
22.5 Properties of the Hermite Polynomials......Page 463
References......Page 464
23.1.1 Definition......Page 466
23.3.3 Laguerre Series......Page 467
23.6.2 Orthonormal Functions......Page 468
Example......Page 469
23.7 Tables of Laguerre Polynomials......Page 470
References......Page 472
24.3.1 Relations......Page 474
24.7 Table of Chebyshev Properties......Page 475
References......Page 476
The Handbook of Formulas and Tables for Signal Processing......Page 477
25.1.2 Definition of Nonintegral Order......Page 478
25.2.1 Recurrence Relations......Page 479
25.3.1 Integral Representation......Page 480
Example......Page 481
Example......Page 482
25.4.2 Product Property......Page 483
Solution......Page 484
25.5 Properties of Bessel Function......Page 485
25.6.2 Recurrence Relations......Page 491
25.7.4 Expansion Form......Page 492
References......Page 493
26.1.2 Orthogonality Property......Page 495
26.2.1 Zernike Series......Page 497
26.2.2 Expansion of Real Functions......Page 500
References......Page 501
27.1.3 Beta Function......Page 503
27.1.4 Properties of G(x)......Page 504
27.1.7 Definition of Beta Function......Page 505
27.1.9 Table of Gamma and Beta Function Relations......Page 506
27.3.1 Sine Integral......Page 508
27.4.3 Values at Infinity......Page 509
27.5.6 Special Values......Page 510
27.6.6 Differential Equations......Page 511
27.6.7 Table of Complete Elliptic Integrals......Page 512
References......Page 513
28.1.4 Examples......Page 515
28.2.1 Bernoulli’s Numbers Bn (n = 1,2,…):......Page 516
28.2.3 Euler’s Constant......Page 517
28.4.1 Sum of Powers......Page 518
Example......Page 519
References......Page 520
29.1.2 Phase and Group Delays......Page 522
29.2.2 Fourier Series......Page 523
Solution......Page 524
29.4.1 Rectangular......Page 525
Solution......Page 526
29.4.6 Window Parameters......Page 527
Steps for Design......Page 528
29.5.1 Transition Width (see Figure 29.2)......Page 529
29.7.1 Transition Width......Page 530
Solution......Page 531
30.2.2 Conditions......Page 533
Solution......Page 534
30.3.4 Stability......Page 535
30.5.4 Bilinear Transformation......Page 536
30.5.8 The Warping Effect......Page 537
Example......Page 538
References......Page 539
The Handbook of Formulas and Tables for Signal Processing......Page 540
31.1.4 Loss Amplitude......Page 541
31.2.1 Butterworth Filters......Page 542
31.2.3 Elliptic Filters......Page 543
31.3.1 Lowpass and Highpass Filters (see Figure 31.2)......Page 544
31.3.2 Bandpass and Bandstop Filters (see Figure 31.3)......Page 545
Solution......Page 546
Solution......Page 547
References......Page 548
Example 1......Page 550
32.1.1.10 Efficient Estimator......Page 551
Example 2......Page 552
32.1.2.6 CRLB-Vector Parameter......Page 553
32.1.2.8 Vector Transformations CRLB......Page 554
Example 1......Page 555
Example......Page 556
32.1.6.1 Definition......Page 557
32.1.6.6 Order-Recursive LS......Page 558
32.1.6.8 Sequential Least Squares Error......Page 559
32.1.7.2 Vector Parameter......Page 560
Example 1......Page 561
32.1.8.4 Linear Model (posterior p.d.f. for the general linear model)......Page 562
Example 1......Page 563
Example 1......Page 564
Steps......Page 565
32.2.4.1 Steps......Page 566
Steps......Page 567
Example 1......Page 568
References......Page 569
Matrices......Page 571
Example......Page 572
Example......Page 573
Example......Page 574
33.1.18 Hankel......Page 575
Example......Page 576
Example......Page 577
Example......Page 578
33.5.6 Orthogonal......Page 579
33.7.2 Partitioned......Page 580
33.8.4 Properties......Page 581
Example......Page 582
Example......Page 583
Example......Page 584
Example......Page 585
33.11.4 Distance from Projection......Page 586
33.13.2 Characteristic Polynomial......Page 587
33.13.5 Properties of Norms......Page 588
33.14.3 Properties of g-inverse......Page 589
33.15.1 Computation (theorem)......Page 590
Example......Page 591
Example......Page 592
33.16.5 Steps to find......Page 593
33.18.3 Minimization of Sum of Squares of Deviations......Page 594
33.19.5 Solution with L-Inverse......Page 595
33.20.1 The Inverse of a Partitioned Matrix......Page 596
Example......Page 597
33.24.2 Upper Triangular......Page 598
33.24.13 Orthogonal Decomposition......Page 599
33.26.2 Properties of Direct Products......Page 600
33.27.2 Properties......Page 601
33.28.4 Properties......Page 602
Example......Page 603
33.30.1 Definition......Page 604
Example......Page 605
33.33.1 Definitions......Page 606
33.34.1 Derivative of a Function with Respect to a Vector......Page 607
33.34.10......Page 608
References......Page 609
The Handbook of Formulas and Tables for Signal Processing.......Page 610
34.1.1 Axioms of Probability......Page 611
34.2.5 Properties......Page 612
Example......Page 613
34.3.9 Poisson Theorem......Page 614
Example......Page 615
34.4.5 Tables of Distribution Functions (see Table 34.1)......Page 616
34.4.6 Conditional Distribution......Page 626
Example......Page 636
Example 4......Page 637
34.5.9 Variance......Page 638
34.5.13 Generalized Moments......Page 639
34.5.16 Second Characteristic Function......Page 640
34.6.3 Conditional Distribution Function......Page 641
34.6.9 Jointly Normal r.v.......Page 642
Example 2......Page 643
34.8.2 Density Function......Page 644
34.8.4 Functions of Independent r.v.'s......Page 645
34.9.5 Correlation Coefficient......Page 646
Example......Page 647
34.11.1 Jointly Normal......Page 648
34.12.2 Characteristic Function with Means......Page 649
Example......Page 650
34.14.2.5 Variance of Uncorrelated r.v.'s......Page 651
34.14.3.1 Density Function......Page 652
34.14.4.3 Stochastic Convergence......Page 653
Example......Page 654
34.15.1.4......Page 655
34.15.1.11 Distribution Function......Page 656
Example......Page 657
34.17.1.2 Mean of Output......Page 658
34.17.3.5 Continuity of Stationary Process......Page 659
34.17.4.5 Variance of S......Page 660
34.17.4.8 Ergoticity of the Autocorrelation......Page 661
34.18.2.1 Power Spectrum (spectral density; see Table 34.8.)......Page 662
34.18.2.4 Relationships Between Processes (see Table 34.9)......Page 664
34.18.3.2 Mean......Page 665
34.18.3.9 Multiple Terminals Spectra (see Figures 34.4 and 34.5)......Page 666
Example......Page 667
34.18.3.14 Periodic Processes in Linear System (see 34.18.3.13)......Page 668
34.18.4.3 Bandpass Process......Page 669
Examples......Page 670
Example......Page 671
Step 3......Page 672
34.21.1.1......Page 673
34.21.2.3 Linear Systems......Page 674
34.22.3.1 Markoff Process......Page 675
References......Page 676
35.1.2.1 Average (mean value)......Page 678
35.1.3.2 Wide-sense Stationary (or weak)......Page 679
35.1.4.2 White Noise (sequence)......Page 680
35.1.5.7 Expectation of Vectors......Page 681
35.1.5.10 Complex Gaussian Vector......Page 682
35.1.7.4 Complex Vector Parameter u......Page 683
35.1.9.2 Output Power......Page 684
35.1.10.3 Yule-Walker Equations for ARMA Process......Page 685
35.1.10.8 Moving Average Process (MA)......Page 686
35.2.1.3 Denominator Coefficients (ap(p))......Page 687
35.2.2.1 Prony’s Signal Modeling......Page 688
35.2.3.1 Shank’s Signal Modeling......Page 689
35.2.5.1 Normal Equations......Page 690
35.3.1.1 All-Pole Modeling......Page 691
35.3.1.4 Properties......Page 692
Example......Page 693
35.3.5.1 Levinson Recursion......Page 694
35.4.1.4 (j+1) Order Coefficient......Page 695
35.4.1.11 p th -Order FIR Lattice Filter......Page 696
35.4.3.1 Forward Covariance Method......Page 697
Example......Page 698
35.4.3.3 Burg’s Method......Page 699
Example 1......Page 700
35.4.4.3 Burg Reflection Coefficient......Page 701
References......Page 702
36.1.1.3 Power Spectrum Using the Data......Page 704
36.1.2.2 Properties......Page 705
36.1.5.2 Properties......Page 706
36.2.1.3 Steps......Page 707
36.2.2.2 Methods to Find Parameters......Page 708
References......Page 709
37.1.2.1 Estimate......Page 711
Solution......Page 712
37.1.2.8 Linear Prediction......Page 713
Example (smoothing)......Page 714
37.1.3.2 Causal IIR Wiener Filter......Page 715
Solution......Page 716
37.2.1.3 Matrix Form of Stationary AR(p) Process......Page 717
Example......Page 718
37.3.1.7 Data......Page 719
37.3.2.4 Steepest Descent Adaptive Filter......Page 720
Example (adaptive linear prediction):......Page 722
37.3.3.2 IIR LMS Algorithm......Page 724
37.3.5.1 Input Signals......Page 725
37.3.6.1 Filter Configuration......Page 726
References......Page 728
38.1.4 Properties of Bandlimited Functions......Page 730
38.2.1 Interpolation Function......Page 731
38.2.7 Truncation Error......Page 732
38.3.2 Train of Pulses with Flat Tops......Page 734
38.7.1 One System......Page 735
38.8.1 Bounds of Output Function......Page 736
References......Page 737
39.1.1.3 Cumulates (semi-invariants)......Page 739
39.1.2.2 Partitions of Set {1,2,3,4}......Page 740
39.1.3.1 Properties......Page 741
Example......Page 742
39.2.1.3 Bispectrum n = 3......Page 743
39.2.1.5 Triaspectrum n = 4......Page 744
39.2.1.15 Linear Phase Shifts......Page 745
39.4.1.2 Output of LTI System......Page 746
39.4.3.3 Non-Minimum or Mixed Phase MA System......Page 747
39.5.1.1 Higher-Order Statistics Estimates......Page 748
39.5.3.3 Direct Method......Page 749
References......Page 750
40.2.1.1 Inverse Transform Method......Page 752
40.3.1.1 Exponential Distribution......Page 753
40.3.3.1 Beta Distribution......Page 754
40.3.4.1 Normal Distribution......Page 755
40.3.8.1 Chi-Square Distribution......Page 756
40.3.10.1 F Distribution......Page 757
References......Page 758
Example......Page 760
41.3.2 Median Filter Algorithms......Page 761
Example (same as in 41.4.2.1)......Page 762
41.4.6.1 Modified Trimmed Mean Algorithm......Page 763
41.4.8.1 K-Nearest Neighbor Filter Algorithm......Page 764
41.5.3 L-Filters Algorithms......Page 765
41.6.5 Weighted Median Algorithm......Page 766
41.8.1 Purpose......Page 767
41.9.4 y Function in Use......Page 768
41.9.5 M-Filter Algorithm......Page 769
41.10.5 Winsorized Wilcoxon Filters......Page 770
References......Page 771
42.1.3 Admissible Conditions......Page 773
42.1.6 Regularity......Page 774
42.1.11 Constant Fidelity Analysis......Page 775
42.2.6 Two-Scale Relation......Page 776
42.2.8 Two-Scale Relations in the Frequency Domain......Page 777
42.2.10 Orthogonal Wavelet Decomposition......Page 778
42.2.11 Recursive Reconstruction......Page 779
42.3.3 Perfect Reconstruction......Page 780
42.3.4 Orthogonal Filter Bank......Page 781
42.3.6 Example......Page 782
42.3.7 Biorthogonal Filter Bank......Page 783
42.3.9 Biorthogonal Wavelet Decomposition......Page 784
42.4.1 Gabor-Wavelets......Page 785
42.4.3 Haar Basis......Page 786
42.4.4 Daubechies Basis......Page 787
42.4.5 Splines......Page 788
42.4.7 Biorthogonal Basis......Page 789
References......Page 790
43.1.1.3 Trigonometric functions of an arbitary angle (see Figure 43.1)......Page 792
43.1.3.1 Fundamental Identities......Page 793
43.1.3.3 Angle-Sum and Angle-Difference Relations......Page 794
43.1.3.6 Function-Product Relations......Page 795
43.1.3.9 Power Relations......Page 796
43.1.3.12 Identities Involving Principal Values......Page 797
43.1.3.13 Plane Triangle Formulae......Page 798
43.1.3.15 Solution of Oblique Triangles......Page 800
43.2.1.1 Geometrical Defintions (see Figure 43.2)......Page 801
43.2.1.3 Fundamental Identities......Page 802
43.2.1.4 Inverse Hyperbolic Functions*......Page 804
43.2.1.5 Relations with Circular Functions......Page 805
43.2.1.6 Special Values of Hyperbolic Functions......Page 806
44.1 Factors and Expansions......Page 808
44.4 Sums of Powers of Integers......Page 809
44.5.1.6 Arithmetic Power Series......Page 810
44.5.2.2 Exponential Functions......Page 811
44.5.2.4 Trigonometric Functions......Page 812
44.5.2.5 Inverse Trigonometric Functions......Page 813
44.5.2.6 Hyperbolic Functions......Page 814
44.6 Partial Fractions......Page 815
44.6.4 Repeated Quadratic Factor......Page 816
44.7.3 Trigonometric Solution of Cubic Polynomials......Page 817
Example......Page 818
44.7.6 Polynomial Norms......Page 819
45.1 Derivatives......Page 821
Example......Page 824
Example......Page 826
Example......Page 828
45.3.1 Elementary Forms......Page 829
45.3.2 Forms Containing......Page 831
45.3.3 Forms Containing c2 ± x2, x2 – c2......Page 832
45.3.5 Forms Containing and with......Page 833
45.3.6 Forms Containing......Page 834
45.3.7 Forms Containing......Page 836
45.3.8 Forms Containing......Page 837
45.3.9 Forms Containing......Page 838
45.3.10 Forms Containing......Page 840
45.3.11 Forms Containing......Page 842
45.3.12 Forms Containing......Page 843
45.3.13 Miscellaneous Algebraic Forms......Page 844
45.3.14 Forms Involving Trigonometric Functions......Page 845
45.3.15 Forms Involving Inverse Trigonometric Functions......Page 851
45.3.16 Forms Involving Trigonometric Substitutions......Page 852
45.3.17 Logarithmic Forms......Page 853
45.3.18 Exponential Forms......Page 854
45.3.19 Hyperbolic Forms......Page 857
45.3.20 Definite Integrals......Page 859