Signal processing is a broad and timeless area. The term "signal" includes audio, video, speech, image, communication, geophysical, sonar, radar, medical, and more. Signal processing applies to the theory and application of filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals. Handbook of Formulas and Tables for Signal Processing a must-have reference for all engineering professionals involved in signal and image processing. Collecting the most useful formulas and tables - such as integral tables, formulas of algebra, formulas of trigonometry - the text includes:oMaterial for the deterministic and statistical signal processing areasoExamples explaining the use of the given formulaoNumerous definitionsoMany figures that have been added to special chaptersHandbook of Formulas and Tables for Signal Processing brings together - in one textbook - all the equations necessary for signal and image processing for professionals transforming anything from a physical to a manipulated form, creating a new standard for any person starting a future in the broad, extensive area of research.
Author(s): Alexander D. Poularikas
Series: The electrical engineering handbook series
Edition: 1
Publisher: CRC Press; Springer :, IEEE Press
Year: 1999
Language: English
Pages: 820
City: Boca Raton, Fla. :, [New York, NY]
The Handbook of Formulas and Tables for Signal Processing......Page 1
About The Author......Page 5
PREFACE......Page 6
CONTENTS......Page 7
1.1 Definitions and Series Formulas......Page 10
1.2 Orthogonal Systems and Fourier Series......Page 15
1.3 Decreasing Coefficients of Trigonometric Series......Page 16
1.5 Two-Dimensional Fourier Series......Page 17
Examples......Page 18
References......Page 20
2.1.2 One-Sided Inverse Laplace Transform......Page 21
2.1.4 Two-Sided Inverse Laplace Transform......Page 22
2.2.2 Methods of Finding the Laplace Transform......Page 23
2.3.2 Methods of Finding Inverse Laplace Transforms......Page 24
2.4.1 F(w) from F(s)......Page 25
TABLE 2.2 Table of Laplace Operations......Page 26
TABLE 2.3 Table of Laplace Transforms......Page 27
References......Page 43
1.2 Inversion in the Complex Plane......Page 44
Solution......Page 45
Solution......Page 46
Solution......Page 47
1.3 Complex Integration and the Bilateral Laplace Transform......Page 50
Solution......Page 51
3.1.1.1 Fourier Transform......Page 53
3.1.1.2......Page 54
3.1.2.1 Properties of Fourier Transform......Page 55
3.1.3.1 Graphical Representations of Some Fourier Transforms......Page 56
References......Page 80
Example 3.4......Page 81
4.1.2 Properties......Page 83
4.2.2 Properties of Two-Dimensional Discrete-Time Fourier Transform......Page 85
References......Page 86
Example......Page 87
Example......Page 88
Example 5.2......Page 90
5.2.2 Properties......Page 91
5.3.2 Properties......Page 92
Example 5.6......Page 95
Example 5.9......Page 96
Example 5.11......Page 97
5.5.7 The Function d(a1x + b1y + c1, a2x + b2y + c2): From (5.5.5)......Page 98
Example 5.14......Page 99
References......Page 100
6.1.3 Region of Convergence for One-Sided Z-Transform......Page 101
6.1.4 Table of One-Sided Z-Transform Properties......Page 102
6.2.1 Definitions......Page 103
6.2.3 Properties of Two-Sided Z-Transform......Page 104
6.3 Inverse Z-Transform......Page 105
6.4 Positive-Time Z-Transform Tables......Page 109
References......Page 115
Example 6.3......Page 116
Example 6.4......Page 117
Example 6.6......Page 118
Example 6.9......Page 119
Example 6.10......Page 120
Example 6.11......Page 121
Example 6.13......Page 122
7.2.1 Equivalent Noise Bandwidth......Page 123
7.3.2 Rectangle (Dirichlet) Window......Page 126
7.3.3 Triangle (Fejer, Bartlet) Window......Page 127
7.3.4 cosa (t) Windows......Page 128
7.3.6 Hamming Window......Page 129
7.3.8 Blackman Window......Page 130
7.3.9 Harris-Nutall Window......Page 131
7.3.12 Riemann Window......Page 132
7.3.14 Cosine Taper (Tukey) Window......Page 133
7.3.15 Bohman Window......Page 134
7.3.17 Hann-Poisson Window......Page 135
7.3.18 Cauchy (Abel, Poisson) Window......Page 136
7.3.20 Dolph-Chebyshev Window......Page 137
7.3.21 Kaiser-Bessel Window......Page 138
7.3.23 Highest Sidelobe Level versus Worst-Case Processing Loss......Page 139
References......Page 140
8.1.3 Region of Convergence (ROC)......Page 141
8.1.7 Sequences with Support Everywhere......Page 142
8.2.1 Properties of the Z-Transform......Page 143
8.3.1 Inverse Z-Transform......Page 144
8.5.4 Theorem 8.5.1.4 (DeCarlo, 1977; Strintzis, 1977)......Page 146
Example 8.1......Page 147
Example 8.3......Page 148
Example 8.4 (inverse integration)......Page 149
Binomial Coefficients......Page 150
Generalized Mean......Page 152
Triangle Inequalities......Page 153
9.3.3 Theorems on Prime Numbers......Page 154
9.3.9 Diophantine Equations......Page 155
9.5.1 Algebraic Equation......Page 158
9.5.7 Quadratic Equations......Page 159
9.5.9 Binomic Equations......Page 160
9.7.1 Definitions......Page 161
9.8.2 l’Hospital’s Rules......Page 162
9.9.2 Integration Properties......Page 163
9.9.4 Integrals of Rational Algebraic Functions (constants of integration are omitted)......Page 164
9.9.5 Integrals of Irrational Algebraic Functions......Page 165
9.9.6 Exponential, Logarithmic, and Trigonometric Functions......Page 167
9.9.9 Improper Integrals......Page 168
Example......Page 170
9.12 Convergence of Infinite Series......Page 171
9.9.13 Properties of Stieltjes Integrals......Page 169
9.13.2 Power Series......Page 172
9.13.5 Order Concepts......Page 173
9.14 Sums and Series......Page 174
9.15 Lagrange’s Expansion......Page 176
9.16.4 Christoffel-Darboux Formula n......Page 177
9.17.1 Hilbert Space......Page 178
9.17.4 Countably Infinite......Page 179
10.1.2 Pulse Function......Page 180
10.1.6 Sinc Function......Page 181
10.1.10 Exponentially Decaying Cosine Function......Page 182
10.1.13 Cotangent Function......Page 183
10.1.16 Arcsine Function......Page 184
10.1.19 Parabola Function......Page 185
10.1.22 Cubical Parabola......Page 186
10.2.3 Real Exponential Sequence......Page 187
10.2.6 Exponentially Decaying Cosine Function......Page 188
10.3.2 The Pulse Function......Page 189
10.3.5 The Gaussian Function......Page 190
10.3.6 The Sinc Function......Page 191
11.1.2 Discrete Fourier Transform of Sampled Functions......Page 192
11.3.2 DFT of Cyclic Convolution (see Section 11.3.1)......Page 193
Program 11.1: Radix-2 DIF FFT......Page 194
Program 11.2: Radix-2 DIT FFT......Page 195
Program 11.3: Split-Radix FFT Without Table Look-up......Page 197
Program 11.4: Split–Radix with Table Look–up......Page 201
Program 11.5: Inverse Split–Radix FFT......Page 206
Program 11.6: Prime Factor FFT......Page 211
Program 11.7: Real–Valued Split–Radix FFT......Page 215
Program 11.8: Inverse Real–Valued Split–Radix FFT......Page 219
References......Page 223
12.1.2 Filter Transfer Function......Page 224
12.2.1 Definition of Butterworth Low-Pass Filter......Page 225
12.4.4 Butterworth Normalized Low-Pass Filter......Page 226
12.4.5 Butterworth Filter Specifications (see also Figure 12.1)......Page 227
Solution:......Page 228
12.5.2 Recursive Formula for Chebyshev Polynomials......Page 229
12.5.3 Table 12.2 gives the first ten Chebyshev polynomials......Page 230
12.5.6 Pole Location of Chebyshev Filters......Page 231
Left-Hand Poles for the Transfer Function......Page 232
Solution......Page 233
12.6.3 Attenuation......Page 236
12.7.2 Properties of the Rational Function Rn(w)......Page 237
12.7.4 Steps to Calculate the Elliptic Filter......Page 238
Steps......Page 240
Example 12.3 Requirements for an Elliptic Filter:......Page 242
References......Page 243
13.1.2.1 Transform of Derivatives......Page 244
13.1.2.7 Convolution......Page 245
13.2.1 Definition FST......Page 246
13.2.2.7 Integration in the t-Domain......Page 247
Exponential Function......Page 248
13.3.2 Discrete Cosine Transform (DCT)......Page 249
13.5.3 Scaling......Page 250
13.6.2 FST of Real Data Sequence......Page 251
13.7.2 Fourier Cosine Transform Pairs......Page 252
13.8.2 Fourier Sine Transform Pairs......Page 255
13.9 Notations and Definitions......Page 257
References......Page 259
14.1.2 Definition of the Pair with Use of f (units: s –1 )......Page 260
14.1.5 Signs of the cas Function......Page 261
14.2.1 Relationship to Fourier Transform......Page 262
14.3.2 Phase Spectrum......Page 263
14.4.6 Modulation......Page 264
14.4.9 Product......Page 265
14.4.14 Hartley Transform Properties......Page 266
14.5.2 Example (Shifted Gaussian)......Page 267
14.5.7 Example (Cosine)......Page 268
14.5.12 Example......Page 269
14.7 Tables of Fourier and Hartley Transforms......Page 270
14.8.2 Relation to Fourier Transform......Page 272
14.9.3 A C Program for Fast Hartley Transforms......Page 273
References......Page 278
Convolution form representation......Page 279
15.1.2 Analytic Signal......Page 280
15.2.2 Fourier Spectrum of the Analytic Signal......Page 281
15.4.1 Hilbert Transform of Period Functions......Page 282
15.5.1 Hilbert Transform Properties......Page 283
15.5.3 Parseval’s Theorem......Page 284
15.5.6 Hilbert Transform Pairs......Page 285
15.6.3 Fourier Transform of Hilbert Transform......Page 289
15.7.2 Table of Hilbert Transform of Hermite Polynomials......Page 290
15.7.4 Hilbert Transform of Orthonormal Hermite Functions......Page 291
15.9.1 Hilbert Transform of Bessel Function:......Page 292
15.10.1 Instantaneous Angular Frequency......Page 293
15.14.4 Shifting Property......Page 297
Equivalent Notation......Page 300
Amplitude of Hilbert Transformer......Page 302
15.17.1 IIR Ideal Hilbert Transformer......Page 303
Example......Page 304
15.12.1 Causal Systems......Page 294
15.13.3 DHT of a Sequence x(i) in the Form of Convolution......Page 295
15.14.2 Discrete Hilbert Transform......Page 296
15.15.3 All-Pass Filters......Page 298
15.16.2 Ideal Hilbert Transformer With Linear Phase Term......Page 301
References......Page 305
16.1.2 Other Interpretation......Page 306
16.1.4 Rotated Coordinate System (see Figure 16.4)......Page 308
Example......Page 309
16.3.3 Similarity......Page 310
16.3.8 Linear Transformation......Page 311
Example......Page 312
Example......Page 313
Example......Page 314
Example......Page 315
Example......Page 317
Example......Page 318
16.7.1 N-Dimensional Radon Transform with its Properties......Page 319
16.8.4 Abel Transform Pairs......Page 320
16.9.1 Back Projection......Page 321
16.9.5 Filter of Backprojection......Page 322
16.10.1 Abel and Radon Pairs......Page 323
References......Page 326
Example......Page 327
Example (see 17.1.3)......Page 328
17.2.6 Moment......Page 329
17.3.6 Example......Page 330
17.4.3 Example......Page 331
17.5 Hankel Transforms of Order Zero......Page 332
References......Page 335
18.1.3 Relation to Fourier Transform......Page 336
18.2.6 Multiplication by a Power of ln t......Page 337
18.2.10 Multiplicative Convolution......Page 338
18.3.4 Example......Page 339
18.4.5 Functional Relations......Page 340
18.4.8 Riemann’s Zeta Function......Page 341
18.5.1 Tables of Mellin Transform......Page 342
References......Page 344
19.1.2 Definition of WD in Frequency Domain......Page 346
19.2.1 Conjugation......Page 347
19.2.7 Ordinates......Page 348
19.2.13 Time Marginal......Page 349
19.2.16 Total Energy......Page 350
19.2.20 Convolution Covariance •......Page 351
19.2.21 Modulation Covariance......Page 352
19.2.25 Group Delay......Page 353
19.2.30 Chirp Convolution......Page 354
19.2.32 Moyal’s Formula......Page 355
19.2.36 Analytic Signals......Page 356
19.4.1 WD Properties and Ideal Time-Frequency Representations......Page 357
19.5.1 Table Signals with Closed-Form Wigner Distributions (WD) and Ambiguity Functions (AF) (See.........Page 361
19.7.1 Cohen’s Class......Page 364
19.7.3 Table of Time-Frequency Representations of Cohen’s Class......Page 367
19.10.1 WD of Discrete-Time Signals x(n) and g(n)......Page 369
19.11.5 Inner Product......Page 372
19.11.9 Inverse Transform in Time......Page 373
19.11.12 Inner Product of Signals......Page 374
19.11.16 Multiplication in the Time Domain......Page 375
19.12.1 Table of WD of Discrete-Time Functions......Page 376
References......Page 379
20.1 Basic Concepts......Page 380
20.3.1 Continuous Function......Page 381
20.3.7 Rules of Differentiation......Page 382
20.5.1 Complex Exponential Function......Page 383
20.5.8 Other Hyperbolic Relations......Page 384
Example......Page 385
20.7.3 Cauchy First Integral Theorem......Page 386
20.7.8 Derivative of an Analytic Function W(z)......Page 387
Example......Page 388
20.8.1 Laurent Theorem......Page 389
Solution......Page 391
20.9.3 Nonessential Singularity (pole of order m)......Page 392
Example......Page 393
20.10.3 Theorem......Page 394
20.10.5 Residue with Nonfactorable Denominator......Page 395
20.11.3 Maximum Value Over a Path, Theorem......Page 396
20.11.5 Theorem (Mellin 1)......Page 397
Solution......Page 398
20.12.1 Definition of the Bromwich Contour......Page 399
20.12.2 Finite Number of Poles......Page 400
Solution......Page 401
20.13.1 Definition of Branch Points and Branch Cuts......Page 402
Solution......Page 403
Solution......Page 405
Solution......Page 406
Example......Page 407
Solution......Page 408
20.14.1 Evaluation of the Integrals of Certain Periodic Functions......Page 409
20.14.2 Evaluation of Integrals with Limits......Page 410
20.14.3 Certain Infinite Integrals Involving Sines and Cosines......Page 411
Solution......Page 412
Solution......Page 413
Solution......Page 414
Solution......Page 415
Solution......Page 416
Example......Page 417
Solution......Page 418
Solution......Page 419
20.15.1 Cauchy Principal Value......Page 420
20.16 Integral of the Logarithmic Derivative......Page 421
References......Page 424
21.1.4 Recursive Formulas......Page 425
21.1.5 Legendre Differential Equation......Page 426
21.1.9 Series Expansion......Page 427
Example......Page 428
Example......Page 429
Example......Page 430
21.3.3 Properties......Page 431
21.4.2 Second Stieltjes Theorem......Page 432
21.5 Table of Legendre and Associate Legendre Functions......Page 433
References......Page 436
22.1.3 Generating Function......Page 437
22.3 Integral Representation......Page 438
Example......Page 439
22.5 Properties of the Hermite Polynomials......Page 440
References......Page 441
23.1.1 Definition......Page 442
23.3.3 Laguerre Series......Page 443
23.6.2 Orthonormal Functions......Page 444
Example......Page 445
23.7 Tables of Laguerre Polynomials......Page 446
References......Page 448
24.3.1 Relations......Page 449
24.7 Table of Chebyshev Properties......Page 450
References......Page 451
25.1.2 Definition of Nonintegral Order......Page 452
25.2.1 Recurrence Relations......Page 453
25.3.1 Integral Representation......Page 454
Example......Page 455
Example......Page 456
25.4.2 Product Property......Page 457
Solution......Page 458
25.5 Properties of Bessel Function......Page 459
25.6.2 Recurrence Relations......Page 465
25.7.4 Expansion Form......Page 466
References......Page 467
26.1.2 Orthogonality Property......Page 468
26.2.1 Zernike Series......Page 470
26.2.2 Expansion of Real Functions......Page 473
References......Page 474
27.1.3 Beta Function......Page 475
27.1.4 Properties of G(x)......Page 476
27.1.7 Definition of Beta Function......Page 477
27.1.9 Table of Gamma and Beta Function Relations......Page 478
27.3.1 Sine Integral......Page 480
27.4.3 Values at Infinity......Page 481
27.5.6 Special Values......Page 482
27.6.6 Differential Equations......Page 483
27.6.7 Table of Complete Elliptic Integrals......Page 484
References......Page 485
28.1.4 Examples......Page 486
28.2.1 Bernoulli’s Numbers Bn (n = 1,2,…):......Page 487
28.2.3 Euler’s Constant......Page 488
28.4.1 Sum of Powers......Page 489
Example......Page 490
References......Page 491
29.1.2 Phase and Group Delays......Page 492
29.2.2 Fourier Series......Page 493
Solution......Page 494
29.4.1 Rectangular......Page 495
Solution......Page 496
29.4.6 Window Parameters......Page 497
Steps for Design......Page 498
29.5.1 Transition Width (see Figure 29.2)......Page 499
29.7.1 Transition Width......Page 500
Solution......Page 501
30.2.2 Conditions......Page 502
Solution......Page 503
30.3.4 Stability......Page 504
30.5.4 Bilinear Transformation......Page 505
30.5.8 The Warping Effect......Page 506
Example......Page 507
References......Page 508
31.1.4 Loss Amplitude......Page 509
31.2.1 Butterworth Filters......Page 510
31.2.3 Elliptic Filters......Page 511
31.3.1 Lowpass and Highpass Filters (see Figure 31.2)......Page 512
31.3.2 Bandpass and Bandstop Filters (see Figure 31.3)......Page 513
Solution......Page 514
Solution......Page 515
References......Page 516
Example 1......Page 517
32.1.1.10 Efficient Estimator......Page 518
Example 2......Page 519
32.1.2.6 CRLB-Vector Parameter......Page 520
32.1.2.8 Vector Transformations CRLB......Page 521
Example 1......Page 522
Example......Page 523
32.1.6.1 Definition......Page 524
32.1.6.6 Order-Recursive LS......Page 525
32.1.6.8 Sequential Least Squares Error......Page 526
32.1.7.2 Vector Parameter......Page 527
Example 1......Page 528
32.1.8.4 Linear Model (posterior p.d.f. for the general linear model)......Page 529
Example 1......Page 530
Example 1......Page 531
Steps......Page 532
32.2.4.1 Steps......Page 533
Steps......Page 534
Example 1......Page 535
References......Page 536
Matrices......Page 537
Example......Page 538
Example......Page 539
Example......Page 540
33.1.18 Hankel......Page 541
Example......Page 542
Example......Page 543
Example......Page 544
33.5.6 Orthogonal......Page 545
33.7.2 Partitioned......Page 546
33.8.4 Properties......Page 547
Example......Page 548
Example......Page 549
Example......Page 550
Example......Page 551
33.11.4 Distance from Projection......Page 552
33.13.2 Characteristic Polynomial......Page 553
33.13.5 Properties of Norms......Page 554
33.14.3 Properties of g-inverse......Page 555
33.15.1 Computation (theorem)......Page 556
Example......Page 557
Example......Page 558
33.16.5 Steps to find......Page 559
33.18.3 Minimization of Sum of Squares of Deviations......Page 560
33.19.5 Solution with L-Inverse......Page 561
33.20.1 The Inverse of a Partitioned Matrix......Page 562
Example......Page 563
33.24.2 Upper Triangular......Page 564
33.24.13 Orthogonal Decomposition......Page 565
33.26.2 Properties of Direct Products......Page 566
33.27.2 Properties......Page 567
33.28.4 Properties......Page 568
Example......Page 569
33.30.1 Definition......Page 570
Example......Page 571
33.33.1 Definitions......Page 572
33.34.1 Derivative of a Function with Respect to a Vector......Page 573
33.34.10......Page 574
References......Page 575
34.1.1 Axioms of Probability......Page 576
34.2.5 Properties......Page 577
Example......Page 578
34.3.9 Poisson Theorem......Page 579
Example......Page 580
34.4.5 Tables of Distribution Functions (see Table 34.1)......Page 581
34.4.6 Conditional Distribution......Page 591
Example......Page 601
Example 4......Page 602
34.5.9 Variance......Page 603
34.5.13 Generalized Moments......Page 604
34.5.16 Second Characteristic Function......Page 605
34.6.3 Conditional Distribution Function......Page 606
34.6.9 Jointly Normal r.v.......Page 607
Example 2......Page 608
34.8.2 Density Function......Page 609
34.8.4 Functions of Independent r.v.'s......Page 610
34.9.5 Correlation Coefficient......Page 611
Example......Page 612
34.11.1 Jointly Normal......Page 613
34.12.2 Characteristic Function with Means......Page 614
Example......Page 615
34.14.2.5 Variance of Uncorrelated r.v.'s......Page 616
34.14.3.1 Density Function......Page 617
34.14.4.3 Stochastic Convergence......Page 618
Example......Page 619
34.15.1.4......Page 620
34.15.1.11 Distribution Function......Page 621
Example......Page 622
34.17.1.2 Mean of Output......Page 623
34.17.3.5 Continuity of Stationary Process......Page 624
34.17.4.5 Variance of S......Page 625
34.17.4.8 Ergoticity of the Autocorrelation......Page 626
34.18.2.1 Power Spectrum (spectral density; see Table 34.8.)......Page 627
34.18.2.4 Relationships Between Processes (see Table 34.9)......Page 629
34.18.3.2 Mean......Page 630
34.18.3.9 Multiple Terminals Spectra (see Figures 34.4 and 34.5)......Page 631
Example......Page 632
34.18.3.14 Periodic Processes in Linear System (see 34.18.3.13)......Page 633
34.18.4.3 Bandpass Process......Page 634
Examples......Page 635
Example......Page 636
Step 3......Page 637
34.21.1.1......Page 638
34.21.2.3 Linear Systems......Page 639
34.22.3.1 Markoff Process......Page 640
References......Page 641
35.1.2.1 Average (mean value)......Page 642
35.1.3.2 Wide-sense Stationary (or weak)......Page 643
35.1.4.2 White Noise (sequence)......Page 644
35.1.5.7 Expectation of Vectors......Page 645
35.1.5.10 Complex Gaussian Vector......Page 646
35.1.7.4 Complex Vector Parameter u......Page 647
35.1.9.2 Output Power......Page 648
35.1.10.3 Yule-Walker Equations for ARMA Process......Page 649
35.1.10.8 Moving Average Process (MA)......Page 650
35.2.1.3 Denominator Coefficients (ap(p))......Page 651
35.2.2.1 Prony’s Signal Modeling......Page 652
35.2.3.1 Shank’s Signal Modeling......Page 653
35.2.5.1 Normal Equations......Page 654
35.3.1.1 All-Pole Modeling......Page 655
35.3.1.4 Properties......Page 656
Example......Page 657
35.3.5.1 Levinson Recursion......Page 658
35.4.1.4 (j+1) Order Coefficient......Page 659
35.4.1.11 p th -Order FIR Lattice Filter......Page 660
35.4.3.1 Forward Covariance Method......Page 661
Example......Page 662
35.4.3.3 Burg’s Method......Page 663
Example 1......Page 664
35.4.4.3 Burg Reflection Coefficient......Page 665
References......Page 666
36.1.1.3 Power Spectrum Using the Data......Page 667
36.1.2.2 Properties......Page 668
36.1.5.2 Properties......Page 669
36.2.1.3 Steps......Page 670
36.2.2.2 Methods to Find Parameters......Page 671
References......Page 672
37.1.2.1 Estimate......Page 673
Solution......Page 674
37.1.2.8 Linear Prediction......Page 675
Example (smoothing)......Page 676
37.1.3.2 Causal IIR Wiener Filter......Page 677
Solution......Page 678
37.2.1.3 Matrix Form of Stationary AR(p) Process......Page 679
Example......Page 680
37.3.1.7 Data......Page 681
37.3.2.4 Steepest Descent Adaptive Filter......Page 682
Example (adaptive linear prediction):......Page 684
37.3.3.2 IIR LMS Algorithm......Page 686
37.3.5.1 Input Signals......Page 687
37.3.6.1 Filter Configuration......Page 688
References......Page 690
38.1.4 Properties of Bandlimited Functions......Page 691
38.2.1 Interpolation Function......Page 692
38.2.7 Truncation Error......Page 693
38.3.2 Train of Pulses with Flat Tops......Page 695
38.7.1 One System......Page 696
38.8.1 Bounds of Output Function......Page 697
References......Page 698
39.1.1.3 Cumulates (semi-invariants)......Page 699
39.1.2.2 Partitions of Set {1,2,3,4}......Page 700
39.1.3.1 Properties......Page 701
Example......Page 702
39.2.1.3 Bispectrum n = 3......Page 703
39.2.1.5 Triaspectrum n = 4......Page 704
39.2.1.15 Linear Phase Shifts......Page 705
39.4.1.2 Output of LTI System......Page 706
39.4.3.3 Non-Minimum or Mixed Phase MA System......Page 707
39.5.1.1 Higher-Order Statistics Estimates......Page 708
39.5.3.3 Direct Method......Page 709
References......Page 710
40.2.1.1 Inverse Transform Method......Page 711
40.3.1.1 Exponential Distribution......Page 712
40.3.3.1 Beta Distribution......Page 713
40.3.4.1 Normal Distribution......Page 714
40.3.8.1 Chi-Square Distribution......Page 715
40.3.10.1 F Distribution......Page 716
References......Page 717
Example......Page 718
41.3.2 Median Filter Algorithms......Page 719
Example (same as in 41.4.2.1)......Page 720
41.4.6.1 Modified Trimmed Mean Algorithm......Page 721
41.4.8.1 K-Nearest Neighbor Filter Algorithm......Page 722
41.5.3 L-Filters Algorithms......Page 723
41.6.5 Weighted Median Algorithm......Page 724
41.8.1 Purpose......Page 725
41.9.4 y Function in Use......Page 726
41.9.5 M-Filter Algorithm......Page 727
41.10.5 Winsorized Wilcoxon Filters......Page 728
References......Page 729
43.1.1.3 Trigonometric functions of an arbitary angle (see Figure 43.1)......Page 749
43.1.3.1 Fundamental Identities......Page 750
43.1.3.3 Angle-Sum and Angle-Difference Relations......Page 751
43.1.3.6 Function-Product Relations......Page 752
43.1.3.9 Power Relations......Page 753
43.1.3.12 Identities Involving Principal Values......Page 754
43.1.3.13 Plane Triangle Formulae......Page 755
43.1.3.15 Solution of Oblique Triangles......Page 757
43.2.1.1 Geometrical Defintions (see Figure 43.2)......Page 758
43.2.1.3 Fundamental Identities......Page 759
43.2.1.4 Inverse Hyperbolic Functions*......Page 761
43.2.1.5 Relations with Circular Functions......Page 762
43.2.1.6 Special Values of Hyperbolic Functions......Page 763
44.1 Factors and Expansions......Page 764
44.4 Sums of Powers of Integers......Page 765
44.5.1.6 Arithmetic Power Series......Page 766
44.5.2.2 Exponential Functions......Page 767
44.5.2.4 Trigonometric Functions......Page 768
44.5.2.5 Inverse Trigonometric Functions......Page 769
44.5.2.6 Hyperbolic Functions......Page 770
44.6 Partial Fractions......Page 771
44.6.4 Repeated Quadratic Factor......Page 772
44.7.3 Trigonometric Solution of Cubic Polynomials......Page 773
Example......Page 774
44.7.6 Polynomial Norms......Page 775
45.1 Derivatives......Page 776
Example......Page 779
Example......Page 781
Example......Page 783
45.3.1 Elementary Forms......Page 784
45.3.2 Forms Containing......Page 786
45.3.3 Forms Containing c2 ± x2, x2 – c2......Page 787
45.3.5 Forms Containing and with......Page 788
45.3.6 Forms Containing......Page 789
45.3.7 Forms Containing......Page 791
45.3.8 Forms Containing......Page 792
45.3.9 Forms Containing......Page 793
45.3.10 Forms Containing......Page 795
45.3.11 Forms Containing......Page 797
45.3.12 Forms Containing......Page 798
45.3.13 Miscellaneous Algebraic Forms......Page 799
45.3.14 Forms Involving Trigonometric Functions......Page 800
45.3.15 Forms Involving Inverse Trigonometric Functions......Page 806
45.3.16 Forms Involving Trigonometric Substitutions......Page 807
45.3.17 Logarithmic Forms......Page 808
45.3.18 Exponential Forms......Page 809
45.3.19 Hyperbolic Forms......Page 812
45.3.20 Definite Integrals......Page 814