The Geometry of Higher-Order Lagrange Spaces: Applications to Mechanics and Physics (Fundamental Theories of Physics)

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This monograph is devoted to the problem of the geometrizing of Lagrangians which depend on higher-order accelerations. It presents a construction of the geometry of the total space of the bundle of the accelerations of order k>=1. A geometrical study of the notion of the higher-order Lagrange space is conducted, and the old problem of prolongation of Riemannian spaces to k-osculator manifolds is solved. Also, the geometrical ground for variational calculus on the integral of actions involving higher-order Lagrangians is dealt with. Applications to higher-order analytical mechanics and theoretical physics are included as well. Audience: This volume will be of interest to scientists whose work involves differential geometry, mechanics of particles and systems, calculus of variation and optimal control, optimization, optics, electromagnetic theory, and biology.

Author(s): R. Miron
Series: Fundamental Theories of Physics
Edition: 1st
Publisher: Springer
Year: 1997

Language: English
Commentary: +OCR
Pages: 348