The Engineering Design Primer

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Created to support senior-level courses/modules in product design, K. L. Richard's ENGINEERING DESIGN PRIMER reflects the author's deep experience in engineering product management and design. The combination of specific engineering design processes within the boader context of creative, team-based product design, makes this the ideal resource for project-based coursework. Starting with design concepts and tasks, the text then explores materials selection, optimisation, reliability, statistics, testing, and economic factors- all supported with real-life examples. Student readers will gain a practical perspective of the work they'll be doing as their engineering careers begin.

Author(s): Keith L. Richards
Publisher: CRC Press
Year: 2020

Language: English
Pages: xxii+302

Cover
Half Title
Title Page
Copyright Page
Contents
Preface
About the Author
1. Organisation and Structure of the Drawing Office
1.1. Introduction
1.2. The Purpose of the Drawing Office
1.3. The Importance of the Drawing Office
1.4. Organisation of a Typical Drawing Office
2. Engineering Drawing Principles
2.1. Introduction
2.1.1. Technical Product Documentation
2.1.2. BS 308
2.1.3. BS 8888:2000
2.2. Classification of Engineering Drawings
2.2.1. A Design Layout Drawing (or a Design Scheme)
2.2.2. A Detailed Drawing
2.2.3. Tabular Drawing
2.2.4. Assembly Drawing
2.2.5. Combined Drawing
2.2.6. Arrangement Drawing
2.2.7. Diagram Drawing
2.2.8. Items List (Also Referred to as a Parts List)
2.2.9. Drawing List
2.3. Drawing Sheet Sizes
2.3.1. Metric Sheet Sizes
2.3.2. Requirements of Drawing
2.3.3. Title Blocks
2.3.4. Borders and Frames
2.3.5. Trimming Marks
2.3.6. Centring Marks
2.3.7. Orientation Marks
2.3.8. Alphanumeric Reference Graduations
2.3.9. Drawing Scales
2.4. Engineering Drawing Numbers
2.4.1. Revision Numbers
2.4.2. Group Technology
2.4.3. Classification and Coding
2.5. Manual and Digital Draughting
2.5.1. Manual Draughting
2.5.1.1. Freehand Sketches
2.5.1.2. Formal Drawing
2.5.2. A Precautionary Tale
2.6. Projection Methods
2.6.1. Orthographic Projection
2.6.1.1. Principal View
2.6.2. Axonometric Projection
2.6.2.1. Isometric
2.6.2.2. Trimetric
2.6.2.3. Dimetric
2.6.2.4. Oblique
2.6.3. Perspective Projections
2.6.3.1. Single-Point Perspective
2.6.3.2. Second-Point Perspective
2.6.3.3. Three-Point Perspective
2.7. Line Types and Thicknesses
2.7.1. Dimension Lines
2.7.2. Leader Lines
2.7.3. The Decimal Marker
2.8. Sectional Views
2.9. Lettering, Symbols and Abbreviations
2.9.1. Basic Requirements of Lettering
2.9.2. Classification of Lettering
2.9.3. Height of Lettering
2.10. Dimensioning
2.10.1. Unidirectional
2.10.2. Aligned
2.10.3. Tabular
2.10.4. The Rules for Dimensioning
2.10.5. Features That Are Not Drawn to Scale
2.10.6. Chain Dimensioning
2.10.7. Parallel Dimensioning
2.10.8. Running Dimensioning
2.10.9. Staggered Dimensioning
2.10.10. Dimensioning Circles and Diameters
2.10.11. Dimensioning Radii
2.10.12. Dimensioning Spherical Radii
2.10.13. Dimensioning Curves
2.10.14. Unidirectional and Aligned Dimensions
2.10.15. Angular Dimensions
2.10.16. Dimensioning Tapers
2.10.17. Dimensioning Two Mating Tapers
2.10.18. Dimensioning Chamfers
2.10.19. Dimensioning Flats or Squares
2.10.20. Dimensioning Holes
2.10.20.1. Plain Holes
2.10.20.2. Threaded Holes
2.10.21. Dimensioning Spotfaces, Countersink and Counterbores
2.10.21.1. Spotface
2.10.21.2. Countersink
2.10.21.3. Counterbore
2.11. Tolerances, Limits and Fits
2.11.1. Dimension Tolerances
2.11.2. Limits
2.11.2.1. Tolerance
2.11.2.2. Allowance
2.11.2.3. Upper Deviation
2.11.2.4. Lower Deviation
2.11.2.5. Fundamental Deviation
2.11.3. Fit System
2.11.3.1. Clearance Fit
2.11.3.2. Transition Fit
2.11.3.3. Interference Fit
2.11.4. Standard Limits and Fits Systems
2.11.4.1. Standard Tolerances
2.11.4.2. Fundamental Deviations
2.11.4.3. Consider the Designation: 50H6/g5
2.11.4.4. 50g6
2.11.5. Upper and Lower Deviations
2.11.5.1. Shaft Letter Codes c, d, f, g and h
2.11.5.2. Shaft Letter Codes k, n, p, s and u
2.11.5.3. Hole Letter Code ‘H’
2.11.6. Loose Running Fit (Example)
2.11.7. Surface Finish
2.11.8. Selected ISO Fits – Hole basis
2.11.9. Interpretation of Limits of Size in Relation to Form
2.12. Geometrical Dimensioning and Tolerances
2.12.1. Early History
2.12.2. Introduction
2.12.3. Application
2.12.4. Geometrical and Dimensioning and Tolerances
2.12.5. Tolerance Frame
2.13. Examples of the Applications of Geometrical Tolerances
2.13.1. Straightness
2.13.2. Flatness
2.13.3. Circularity
2.13.4. Cylindricity
2.13.5. Profile of a Surface
2.14. Maximum Material and Least Material Principles
2.14.1. Maximum Material Conditions and Least Material Condition
2.15. Surface Finish
2.15.1. Introduction
2.15.2. Types of Surface Finish
2.15.2.1. Surface Roughness
2.15.2.2. Waviness
2.15.2.3. Lay
2.15.3. Methods of Indicating Surface Finish and Texture
2.15.3.1. Graphical Symbols to Indicate Surface Texture
2.16. Checking Drawings
2.16.1. Drawing Numbering
2.16.2. Format for Checking Drawings
2.16.3. Read Notes
2.16.4. Detailed Drawings
2.16.5. Assembly Drawings
2.16.6. General Draughting Rules
3. The Engineering Design Process
3.1. Introduction
3.1.2. Design Specification
3.1.3. Concept Development
3.1.4. Feasibility Assessment
3.1.5. Complete PDS
3.1.6. Preliminary Design
3.1.7. Detail Design
3.1.8. Manufacture
3.1.9. Marketing and Sales
3.2. Classification of Design
3.2.1. Adaptive Design
3.2.2. Development Design
3.2.3. New Design
3.2.4. Rational Design
3.2.5. Empirical Design
3.2.6. Industrial Design
3.2.7. Product Design
3.2.8. Optimum Design
3.2.9. System Design
3.2.10. Tooling Design
3.3. New Design Requirements
3.3.1. Update an Existing Product
3.3.2. New Product
3.3.3. Market Research
3.3.3.1. Preliminary Market Research
3.3.3.2. Review Current Competitors and Products
3.3.3.3. Is There a Marketing Opportunity?
3.3.4. Initial Design Review
3.3.5. Preliminary Design Review
3.3.6. Product Design Specification
3.3.6.1. Performance
3.3.6.2. Environment
3.3.6.3. Target Production Cost
3.3.6.4. Competition
3.3.6.5. Standards
3.3.6.6. Packing
3.3.6.7. Shipping
3.3.6.8. Size
3.3.6.9. Materials
3.3.6.10. Proprietary Items (Bought Out Parts)
3.3.6.11. Maintenance
3.3.6.12. Product Lifespan
3.3.6.13. Reliability
3.3.6.14. Finishing
4. Product Design Specification
4.0. Introduction
4.1. Description of the Product
4.1.1. Product Brief (Description and Justification)
4.1.2. The Environment the Product Will Be Expected to Operate in
4.1.3. Product Safety Requirements
4.1.4. Expected Product Reliability Standards and Requirements
4.1.5. Expected Product Ergonomic Requirements – Customer Requirement
4.1.6. Expected Product Aesthetics – Customer Requirement
4.1.7. Expected Product Maintenance Requirements
4.1.8. Possible ‘Off-the-Shelf’ Proprietary Parts Are Used?
4.1.9. Material Requirements
4.1.10. Product End-of-Life Requirements
4.1.11. Manufacturing Process Requirements and Limitations
4.1.12. Product Packaging Requirements
4.1.13. Applicable Codes of Practice and Standards to Be Checked
4.1.14. Check for Any Patent Infringement
4.1.15. Processes to Be Researched and Benchmarked: Special Fabrication Techniques to Be Researched
4.1.16. Any Special Product or Part Testing Requirements
4.2. Marketing Issues
4.2.1. Potential Customer Base
4.2.2. Market Constraints on Products
4.2.3. Expected Product Competition (These Will Be Benchmarked)
4.2.4. Product Target Price – OEM and MSRP
4.2.5. Target Production Volume and Potential Market Share
4.2.6. Expected Product Distribution Environment
4.3. Capability Issues
4.3.1. Company Constraints on Product Design, Manufacture and Distribution
4.3.2. Schedule Requirements – Time to Market
5. Conceptual Design
5.1. Creativity Methods
5.2. Breaking the Mindset
5.2.1. Inversion
5.2.2. Analogy
5.2.3. Empathy
5.2.4. Fantasy
5.2.5. Brainstorming
5.2.6. Problem Definition
5.2.7. Divergence
5.2.8. Categorisation
5.2.9. Convergence Phase
5.2.10. Individual Brainstorming
5.2.11. Group Brainstorming
5.2.12. Brainwriting
5.2.13. Mind Mapping
5.2.14. SCAMPER
5.2.15. TRIZ
5.2.16. Concept Evaluation and Selection
5.2.17. Criteria for Evaluation
5.2.18. Feasibility Judgement
5.2.19. Technological Readiness
5.2.20. Go/No-Go Screening
5.2.21. Decision Matrix
5.2.22. Feasibility Assessment
5.2.23. Technical Feasibility
5.2.24. Financial and Market Feasibility
5.2.25. Organisational Feasibility
6. Design for ‘X’
6.1. Introduction
6.2. Design for Manufacture
6.2.1. Machinability
6.2.1.1. Machinability Rating
6.2.2. Shape
6.2.3. Tolerances and Surface Finish
6.2.3.1. Tolerances
6.2.3.2. Surface Finishes
6.2.4. Product Design Guidelines 1
6.2.4.1. Design Parts to Minimise Machining
6.2.4.2. Essential Reasons for Machining
6.2.5. Product Design Guidelines II
6.3. Design for Quality
6.3.1. Defining Quality
6.3.2. The Importance of Design for Quality
6.3.3. Design for Quality
6.3.4. Benefits of Design for Quality
6.3.5. Design Reviews
6.3.6. The Importance of Formal Design Reviews
6.3.7. Types of Design Reviews
6.3.7.1. Design Requirements Review
6.3.7.2. Conceptual Design Review
6.3.7.3. Preliminary Design Review
6.3.7.4. Critical Design Review
6.3.7.5. Qualification Readiness Review
6.3.7.6. Final Design Review
6.3.8. The Design Review Team
6.3.9. Design Review Input Data
6.3.10. Design Review Reports
6.3.11. Design Review Follow-Up
6.3.12. Failure Modes and Effects Analysis
6.3.12.1. A Brief History
6.3.12.2. Purpose of FMEA
6.3.12.3. Steps to Carry Out an FMEA
6.3.13. Summary
6.4. Design for Reliability
6.4.1. Reliability and the Bathtub Curve
6.4.1.1. Causes of Component Failure
6.4.2. Safety Critical Design
6.4.3. Fault Tree Analysis (FTA)
6.4.3.1. Drawing Fault Trees: Gates and Events
6.4.4. General Procedure for Fault Tree Analysis
6.4.5. Rules to Fault Tree Construction
6.4.5.1. Example
6.4.6. Fault Tree Construction
6.5. Fault Tree Evaluation
6.5.1. The ‘OR’ Gate
6.6. Robust Design
6.6.1. Introduction
6.6.2. Sources of Variation
6.6.2.1. Material Properties
6.6.2.2. Applied Forces
6.6.2.3. Temperature
6.6.2.4. Environmental Factors
6.6.2.5. Assembly Methods
6.6.2.6. Kinematic Effects
6.6.2.7. Manufacturing Processes
6.6.2.8. Classify the Variables
6.6.3. Taguchi’s Loss Function
6.6.4. P-Diagram (Parametric Diagram)
6.6.5. Taguchi Concepts
6.6.5.1. An Example of Robust design via the Taguchi Method
6.6.6. The Taguchi Loss Function
6.6.7. Signal-to-Noise Ratio
6.7. Design for Maintenance
6.7.1. Standardisation
6.7.1.1. Authors Note
6.7.2. Modularisation
6.7.3. Functional Packaging
6.7.4. Interchangeability
6.7.5. Accessibility
6.7.6. Malfunction Annunciation
6.7.7. Fault isolation
6.7.8. Identification
6.7.9. Summary
6.8. Design for the Environment
6.8.1. Introduction
6.8.2. The Importance of Design for the Environment
6.8.2.1. Non-Toxic Processes and Production Methods
6.8.2.2. Minimum Energy Utilisation
6.8.2.3. Minimum Emissions
6.8.2.4. Minimum Waste, Scrap and By-Products
6.8.3. Design for Environmental Packaging Involving the Following Considerations
6.8.3.1. Minimum of Packaging Materials
6.8.3.2. Reusable Pallets, Totes and Packaging
6.8.3.3. Recyclable Packaging Materials
6.8.3.4. Bio-Degradable Packaging Materials
6.8.4. Design for Disposable and Recyclability Involving the Following Considerations
6.8.5. Design for Disassembly
6.9. Design for Life Cycle Costs
6.9.1. Manufacturing Costs
6.9.2. Life Cycle Costing
7. Feasibility Assessment
7.1. Strategic Management
7.2. Technical Feasibility
7.3. Financial and Market Feasibility
7.4. Organisational Feasibility
7.5. Marketing Feasibility
7.5.1. Potential Market Size
7.5.2. Market Trends
7.6. Critical Issues
7.6.1. SWOT (Strength, Weaknesses, Opportunities, Threats)
7.6.2. Pest (Political, Economic, Social, Technological)
7.7. Technical Feasibility
7.7.1. Summary
7.7.2. Prepare an Outline
7.7.3. Calculate Material Requirements
7.7.4. Calculate Labour Requirements
7.7.5. Transportation and Shipping Requirements
7.7.6. Calculate Marketing Requirements
7.7.7. The Physical Location of the Business
7.7.8. Technology Requirements
7.7.9. Target Dates
7.7.10. Financial Information
8. Decision-Making
8.1. What Is Decision-Making
8.1.1. Intuition
8.1.2. Reasoning
8.1.3. Applying Both Intuition and Reasoning
8.1.4. What Can Prevent Effective Decision-Making?
8.1.4.1. Too Much Information
8.1.4.2. Too Many People
8.1.4.3. Emotional Attachments
8.1.4.4. No Emotional Attachment
8.1.4.5. Identifying Possible Solutions/Options
8.2. Setting a Time Scale and Deciding Who Is Responsible for the Decision
8.2.1. Responsibility for the Decision
8.2.2. Whenever possible, and if it is not obvious, a better formal agreement is needed to identify who is responsibility for a decision
8.3. Information Gathering
8.3.1. Before Making Any Decision, All Relevant Information Needs to Be Gathered
8.4. Weighing the Risks Involved
8.5. Deciding on Values
8.6. Weighing Up the Pros and Cons
8.7. Making the Decision
8.8. Having Made the Decision …
8.9. Introduction to Constructing Decision Trees
8.9.1. What Is a Decision Tree?
8.9.2. Decision Tree Symbols
8.9.3. How to Draw a Decision Tree
8.9.3.1. Start with the Main Decision
8.9.3.2. Add Chance and Decision Nodes
8.9.3.3. Continue to Expand the Tree until Every Line Has Reached an Endpoint
8.10. With the Completion of the Decision Tree
8.10.1. An Example of a Decision Tree Example
8.10.2. Reading Decision Trees
8.11. Learning Decision Trees Using Iterative Dichotomiser 3 (ID3)
8.11.1. Specifying the Problem
8.11.2. The Basic Idea
8.11.3. Entropy
8.11.4. Information Gain
8.11.5. An Example Calculation
8.11.6. The ID3 Algorithm
8.11.7. Worked Example
8.12. Avoiding Overfitting
8.13. Appropriate Problems for Decision Tree Learning
9. Project Management and Planning
9.1. Introduction
9.2. Work Breakdown and Coding
9.3. Estimating Techniques
9.3.1. Gantt Chart
9.3.1.1. Creating a Gantt Chart
9.3.2. Critical Path Method
9.3.2.1. Key Steps in the Critical Path Method
9.3.3. PERT Estimation Technique
9.3.3.1. Introduction
9.3.3.2. The PERT Basics
9.4. Resource Scheduling
9.5. Project Implementation
9.5.1. Implementation Plan Structure
10. Engineering Design Economics
10.1. Project/Design Cost Accounting
10.1.1. Project/Design Cost Estimating
10.1.2. Key Components of a Cost Estimate
10.1.2.1. Direct Costs
10.1.2.2. Indirect Costs
10.2. Cost Categories
10.2.1. Investment Cost
10.2.2. Operations and Maintenance Cost
10.2.3. Fixed and Variable Cost
10.2.4. Incremental and Marginal Cost
10.2.5. Indirect and Direct Costs
10.2.6. Non-recurring and Recurring Costs
10.3. Cost Accounting
10.4. Cost Estimating
10.5. Payback Period
10.6. Interest
10.7. Cash Flow
10.7.1. Definition of ‘Cash Flow’
10.7.1.1. Definition
10.7.2. Description
10.8. Depreciation and Taxes
10.9. Inflation and Deflation
11. Quality in the Design Process
11.1. Introduction
11.2. Design Procedures
11.2.1. Design Control
11.2.1.1. Design Reviews
11.2.1.2. Design Requirements Review
11.2.1.3. Conceptual Design Review
11.2.1.4. Preliminary Design Review
11.2.1.5. Critical Design Review
11.2.1.6. Qualification Readiness Review
11.2.1.7. Final Design Review
11.2.1.8. The Design Review Team
11.2.1.9. Design Review Input Data
11.2.1.10. Design Review Reports
11.2.1.11. Design Review Follow-Up
11.2.1.12. Qualification Tests and Demonstrations
11.2.2. Verification Design Calculations
11.2.3. Comparing Similar Designs
11.2.4. Changes and Modifications
11.3. Quality Assurance and Control
11.4. Design Change Control
11.5. Implementing the Change
11.6. The Reason for the Change
11.7. Quality Function Deployment
11.7.1. Introduction
11.7.2. What is QFD?
11.7.3. Why Implement QFD?
11.7.4. How to Implement QFD?
11.7.5. Level 1 QFD
11.7.6. Level 2 QFD
11.7.7. Level 3 QFD
11.7.8. Level 4 QFD
12. Design for Optimisation
12.1. Defining Optimum Design
12.2. Tools for Design Optimisation
12.3. Mathematical Models and Optimisation Methods
12.3.1. Differential Calculus Method
12.3.2. The Lagrange Multiplier Method
12.4. Search Methods
12.5. Fibonacci Search Method
12.5.1. What Is the Golden Section Method?
12.5.2. Terminology
12.5.3. Working Method
12.5.3.1. Initialisation Step
12.5.4. Main Step
12.6. Conclusions
13. Probability
13.1. Introduction
13.2. Probability Formula
13.2.1. What is the Formula for Probability?
13.3. Solving Probability Problems
13.4. Numerical Value of Probability
13.5. Calculation of Probability
13.5.1. Proportion of Cases Favourable in an Exhaustive Set
13.5.2. Addition of Probabilities
13.6. Permutations and Combinations
13.6.1. Permutations
13.6.2. Combinations
13.6.3. Compound Probability and Multiplication of Probabilities
13.6.3.1. Compound Events and Dependence
13.7. Binomial, Poisson and Multinomial Laws of Probability
13.7.1. Series of Trials
13.8. The Poisson Distribution
13.8.1. Formula
14. Statistical Methods for Engineers
14.1. Definitions for Some Terms Used in Statistics
14.1.1. Population
14.1.2. Sample
14.1.3. Variate (xr)
14.1.3.1. Continuous Variates
14.1.3.2. Discrete Variates
14.1.4. Frequency (fr)
14.1.5. Mean (M) (Arithmetic Mean Average)
14.1.6. Mode
14.1.7. Median
14.1.8. Quartiles, Deciles, Percentiles (Partition Values)
14.1.9. Dispersion
14.1.10. Standard Deviation (σ) (Variance σ2)
14.1.11. Range
14.1.12. Kurtosis
14.1.13. Skewness
14.2. Frequency Distribution and Pictorial Representations
14.2.1. Bar Chart
14.2.2. Histogram
14.2.3. Frequency Polygon
14.3. Short Method for Calculating the Mean
14.4. Short Method of Calculating the Standard Deviation
14.5. Best Equation of a Curve – Method of Least Squares
14.6. Correlation and Lines of Regression
14.6.1. Correlation
14.6.2. Positive Correlation
14.6.3. Negative Correlation
14.6.4. Perfect Correlation
14.6.5. Zero Correlation
14.6.6. Standard Error of ‘r’
14.6.7. Regression Lines
14.7. Binomial Distribution
14.8. The Poisson Distribution
14.8.1. Poisson Distribution of Flying Bomb Hits on London During World War II
14.9. The Normal Distribution
14.9.1. Fitting a Normal Curve to a Set of Observations
14.10. Elementary Statistical Quality Control
14.10.1. Seven Basic Tools of Quality
14.10.2. Cause and Effect Diagram
14.10.2.1. An Example Fishbone Diagram
14.10.3. Check Sheet
14.10.4. Control Sheet
14.10.4.1. When to Use a Control Chart
14.10.5. Histograms
14.10.5.1. The Construction of a Histogram from a Continuous Variable
14.10.6. Pareto Chart
14.10.7. Scatter Diagram
14.10.7.1. Discussion
14.10.7.2. Pareto Charts
14.10.7.3. When to Use a Pareto Chart
14.10.7.4. Pareto Chart Procedure
15. An Introduction to Material Selection
15.1. Introduction
15.2. Stress-Strain Data
15.2.1. Definitions of Terms
15.2.1.1. Proportional Limit
15.2.1.2. Yield Strength
15.2.1.3. 0.2% Offset
15.2.1.4. Ultimate Strength
15.2.1.5. Modulus of Resilience (see Figure 15.2)
15.2.1.6. Poisson’s Ratio
15.2.1.7. Shear Rigidity
15.2.1.8. Ductility
15.2.1.9. Elongation
15.2.1.10. Creep
15.3. Things to Consider
15.3.1. Environment
15.3.2. Strength
15.3.3. Durability
15.3.4. Stiffness
15.3.5. Weight
15.3.6. Manufacturing
15.3.7. Cost
15.3.8. Maintainability
15.3.9. A Model for Material Selection
15.3.9.1. Geometry
15.3.9.2. Analysis
15.3.9.3. Measurement Evaluation
15.3.9.4. Material Selection
15.3.9.5. Manufacturability
15.3.9.6. Adequacy of Design
15.4. Future Developments
15.4.1. Knowledge-Based Engineering
15.5. Material Performance Indices
16. Mathematical Modelling and Simulation
16.1. What is Mathematical Modelling
16.1.1. Modelling: Newton’s Second Law of Motion
16.2. Example of Numerical Modelling
16.3. Development of the Mathematical Model
16.3.1. Identify the Problem
16.3.2. Formulating the Problem
16.3.3. Collect and Process System Data
16.4. Simulation Methods
16.5. Simulation Model Validation
16.6. Problems Suitable for Simulation
16.7. Selecting Suitable Simulation Software
16.8. Benefits of Mathematical and Simulation Modelling
16.9. Pitfalls to Guard Against When Mathematical and Simulation Modelling
17. Introduction to Configuration Management
17.1. Introduction
17.2. Configuration Control and Change Control
17.2.1. Change Control
17.3. What Is Change Management?
17.4. Three levels of Change Management
17.4.1. Individual Change Management
17.4.2. Organisational/Initiative Change Management
17.4.3. Enterprise Change Management Capability
18. Engineering Communications
18.1. Introduction
18.2. The Formal Engineering Report
18.2.1. The Abstract
18.2.1.1. The Introduction
18.2.2. Technical Approach (Theory)
18.2.3. Structure
18.2.4. Presentation
18.2.5. Planning the Report
18.2.6. Writing the First Draft
18.2.7. Test Set-Up
18.2.8. Revising the First Draft
18.2.9. Diagrams, Graphs, Tables and Mathematics
18.2.10. The Report Layout
18.2.11. Headings
18.2.12. References to Diagrams, Graphs, Tables and Equations
18.2.13. Originality and Plagiarism
18.2.14. Finalising the Report and Proofreading
18.2.15. The Summary
18.2.16. References
18.2.17. Acknowledgements
18.2.18. Appendices
18.3. Proposed Preparation
18.3.1. Background/Problem Statement
18.3.2. Objectives
18.3.3. Technical Approach
18.3.4. Budget
18.3.5. Organisation and Capability
18.4. Oral Communications
18.4.1. The Audience
18.4.2. Planning the Presentation
18.4.3. Delivering the Presentation
18.4.4. Effective Use of Notes
18.4.5. The Use of Visual Aides
Index