Author(s): J. Duncan
Publisher: John Wiley & Sons
Year: 1968
Language: English
City: London etc.
1
METRIC SPACE PRELIMINARIES
1.1
Set theoretic notation and terminology
1
1 .2
Elementary properties of metric spaces ...
3
1.3
Continuous functions on metric spaces
.
.
.
.13
1.4
Compactness ........
19
1.5
Completeness ........
28
1.6
Connectedness ........
30
2
THE COMPLEX NUMBERS
2.1
Definitions and notation ......
35
2.2
Domains in the complex plane .....
43
2.3
The extended complex plane......
50
3
CONTINUOUS AND DIFFERENTIABLE COMPLEX
FUNCTIONS
3.1
Continuous complex functions .....
54
3.2
Differentiable complex functions .....
60
3.3
The Cauchy-Riemann equations .....
67
3.4
Harmonic functions of two real variables
.
.
.71
4
POWER SERIES FUNCTIONS
4.1
Infinite series of complex numbers
. ....
75
4.2
Double sequences of complex numbers ....
79
4.3
Power series functions .......
84
4.4
The exponential function ......
90
4.5
Branches-of-log ........
95
5
ARCS, CONTOURS, AND INTEGRATION
5.1
Arcs ..........
101
5.2
Oriented arcs ........
105
5.3
Simple closed curves
108
5.4
Oriented simple closed curves
.
.
.
.
.114
5.5
The Jordan curve theorem
.
.
.
.
.
.119
5.6
Contour integration
.
.
.
.
.
.
.122
6
CAUCHY’S THEOREM FOR STARLIKE DOMAINS
6.1
Cauchy’s theorem for triangular contours
.
.
.131
6.2
Cauchy’s theorem for starlike domains
.
.
.
.135
6.3
Applications
.
.
.
.
.
.
.
.138
7
LOCAL ANALYSIS
7.1
Cauchy’s integral formulae
.
.
.
.
.
.147
7.2
Taylor expansions
.
.
.
.
.
.
.152
7.3
The Laurent expansion
.
.
.
.
.
.
.158
7.4
Isolated singularities
.
.
.
.
.
.
.163
8
GLOBAL ANALYSIS
8.1
Taylor expansions revisited
.
.
.
.
.
.174
8.2
Properties of zeros
.
.
.
.
.
.
.176
8.3
Entire functions
.
.
.
.
.
.
.
.181
8.4
Meromorphic functions ......
185
8.5
Convergence in stf(D) .......
189
8.6
Weierstrass expansions
.
.
.
.
.
.
.197
8.7
Topological index .......
203
8.8
Cauchy’s residue theorem ......
209
8.9
Mittag-Leffler expansions ......
214
8.10 Zeros and poles revisited ......
222
8.11 The open mapping theorem ......
230
8.12 The maximum modulus principle .....
234
9
CONFORMAL MAPPING
9.1
Discussion of the Riemann mapping theorem
.
.
.
243
9.2
The automorphisms of a domain .....
247
9.3
Mappings of the boundary ......
255
9.4
Some illustrative mappings
.
.
.
.
.
.261
10 ANALYTIC CONTINUATION
10.1
Direct analytic continuations
. .....
264
10.2 General analytic functions ......
269
10.3 Complex analytic manifolds ......
275
10.4 The gamma and zeta functions .....
282
APPENDIX: RIEMANN-ST1ELTJES INTEGRATION
.
.
291
SUGGESTIONS FOR FURTHER STUDY
.
.
.303
BIBLIOGRAPHY
305
INDEX OF SPECIAL SYMBOLS
307
SUBJECT INDEX
309