At publication, The Control Handbook immediately became the definitive resource that engineers working with modern control systems required. Among its many accolades, that first edition was cited by the AAP as the Best Engineering Handbook of 1996. Now, 15 years later, William Levine has once again compiled the most comprehensive and authoritative resource on control engineering. He has fully reorganized the text to reflect the technical advances achieved since the last edition and has expanded its contents to include the multidisciplinary perspective that is making control engineering a critical component in so many fields. Now expanded from one to three volumes, The Control Handbook, Second Edition organizes cutting-edge contributions from more than 200 leading experts. The second volume, Control System Applications, includes 35 entirely new applications organized by subject area. Covering the design and use of control systems, this volume includes applications for: Automobiles, including PEM fuel cells Aerospace Industrial control of machines and processes Biomedical uses, including robotic surgery and drug discovery and development Electronics and communication networks Other applications are included in a section that reflects the multidisciplinary nature of control system work. These include applications for the construction of financial portfolios, earthquake response control for civil structures, quantum estimation and control, and the modeling and control of air conditioning and refrigeration systems. As with the first edition, the new edition not only stands as a record of accomplishment in control engineering but provides researchers with the means to make further advances. Progressively organized, the other two volumes in the set include: Control System Fundamentals Control System Advanced Methods
Author(s): William S. Levine
Series: Electrical Engineering Handbooks
Edition: 2
Publisher: CRC Press
Year: 2011
Language: English
Pages: 883
Tags: Автоматизация;Теория автоматического управления (ТАУ);Книги на иностранных языках;
Contents......Page 7
Preface to the Second Edition......Page 10
Acknowledgments......Page 12
Editorial Board......Page 13
Editor......Page 14
Contributors......Page 15
Section I: Automotive......Page 20
1.1 Introduction......Page 21
1.2 Statement of the Control Problem......Page 22
1.3 LPV H∞ Control......Page 23
1.4 Choosing the LPV WeightsW•(θ, s)......Page 26
1.5 Handling PV Time Delays......Page 27
Feedback Fuel Control......Page 28
Feedforward Fuel Control......Page 29
1.7 Application in Aircraft Flight Control......Page 30
1.8 Conclusions......Page 31
References......Page 32
2.1 Introduction......Page 33
2.3 Engine Control......Page 35
Fuel-Consumption Optimization......Page 36
Idle Speed Control......Page 46
Closed-Loop Air–Fuel Ratio Control......Page 54
2.4 Transmission Controls......Page 58
Tip-In/Back-Out Drivability......Page 62
Cancellation of VCT-Induced Air/Torque Disturbance......Page 67
2.6 Diagnostics......Page 70
Misfire Detection......Page 71
VCT Monitoring......Page 72
References......Page 78
3.1 Introduction......Page 81
Static Tire Model......Page 82
Dynamic Tire Model......Page 85
3.3 Vehicle Suspensions Control......Page 87
Introduction......Page 90
Driver Intent Recognition......Page 91
Vehicle Lateral State Estimation......Page 92
Roll Angle Estimation with ESC Sensor Set......Page 95
Enhanced Roll Angle Estimation......Page 96
RollStability Control......Page 102
Introduction......Page 107
Active Differentials......Page 108
Control Design......Page 109
On-Vehicle Results......Page 113
Introduction......Page 116
Control-Oriented Vehicle Models......Page 117
Active Steering Controller Design......Page 121
Double-Lane Change with Active Steering......Page 123
Integrated Braking and Active Steering Control......Page 128
Double-Lane Change with Active Steering and Differential Braking......Page 131
Summary......Page 136
References......Page 137
Motivation......Page 141
Modeling Requirements......Page 142
Mechanical Systems......Page 143
Engine Systems......Page 144
Electric Systems......Page 145
Offline Optimization......Page 146
Dynamic Programming......Page 147
Connection to the Minimum Principle......Page 148
Online Optimization......Page 150
Equivalent Consumption Minimization Strategies......Page 151
Extensions of the ECMS Approach......Page 152
Modeling Tools......Page 153
System Description and Modeling......Page 154
Optimal Solution......Page 156
References......Page 157
5.1 Introduction......Page 159
5.2 Background: PEMFC Basics......Page 160
5.3 Control of Fuel Cell Subsystems......Page 162
5.4 Anode Water Management......Page 163
5.5 One Dimensional, Channel to Channel, GDL and Membrane Model......Page 166
Overview of Modeling Domains......Page 167
Anode Channel Model......Page 168
Cathode Channel Model......Page 169
Water Transport through the Gas Diffusion Layer......Page 170
Membrane Water Transport......Page 172
5.7 Liquid Water Front Propagation in the GDL......Page 173
Membrane Water Transport......Page 175
5.8 Fitting Water Transport Parameters......Page 177
5.9 Fuel Cell Terminal Voltage......Page 179
Apparent Current Density and Reduced Cell Area......Page 182
5.11 MPC Application......Page 184
Hybrid Model for Control......Page 187
Hybrid Automaton......Page 188
Discrete Time Piecewise Affine System......Page 189
Linearization of Nonlinear Model and Parameter Identification......Page 190
MLD Model Validation......Page 191
Switching MPC Controller......Page 193
Simulation Results......Page 194
Simulation with Switching MPC......Page 195
5.12 Conclusions and Future Work......Page 197
References......Page 198
Section II: Aerospace......Page 202
6. Aerospace Real-Time Control System and Software......Page 203
Advancement of Control Systems That Are Enabled by Computing Systems......Page 204
Increasing Role of Control System Engineers with the Technology Advancement......Page 205
Layered System Architecture......Page 206
System Architecture Development Approach......Page 208
Example: Aircraft Flight Control System Architecture......Page 209
Example: IMA for Boeing 787......Page 210
Overview......Page 211
Layered Architecture......Page 212
Component-Based Architecture......Page 213
Application Layers......Page 214
Example: Aircraft FCS Application Layer Software Architecture......Page 215
Overview......Page 216
DO-178B Standard......Page 217
Mil-STD-2167/Mil-STD-498/IEEE 12207 Standards......Page 219
Capability Maturity Model Integration......Page 220
Waterfall versus Iterative Development Process......Page 221
Simulation for Concept Development and Verification & Validation (V&V)......Page 222
Hardware-in-the-Loop V&V......Page 223
6.6 Integrated System and Software Engineering and Model-Driven andModel-Based Development......Page 224
6.7 Software Reuse and Software Product Lines for Aerospace Systems......Page 225
6.8 Conclusions......Page 226
References......Page 227
7.1 Introduction......Page 228
7.2 Stochastic Decision Making with Uncertainty......Page 230
A Priori Probabilities......Page 231
Reward Multiplier Probabilities......Page 233
Reward Probabilities......Page 234
Reward Functions......Page 235
7.3 Aerial Surveillance......Page 236
Problem Formulation......Page 238
Review of Particle Swarm Optimization......Page 241
Application of PSO to the Surveillance Problem......Page 242
Comparison of Reward Functions for Stochastic Decision Making......Page 243
Defensive Surveillance Examples......Page 244
References......Page 248
8.1 Introduction......Page 250
8.2 Historical Perspective......Page 253
8.3 Linear Control Allocation......Page 254
Unconstrained Linear Control Allocation......Page 255
Constrained Linear Control Allocation......Page 257
Linear and Quadratic Programming Optimization Methods......Page 260
Quadratic Programming......Page 263
8.4 Control Interactions......Page 264
8.5 Effect of Actuator Dynamics on the Performance of Constrained Control Allocation Algorithms......Page 266
8.6 Nonlinear Control Allocation......Page 269
Affine Control Allocation......Page 270
Nonlinear Programming for Separable Nonlinearities......Page 271
References......Page 272
9.1 Agent Model......Page 274
Aggregation Potential......Page 275
Analysis of Swarm Motion......Page 278
Swarm Cohesion Analysis......Page 280
9.3 Formation Control......Page 281
9.4 Social Foraging......Page 283
Plane Resource Profile......Page 285
Quadratic Resource Profile......Page 286
Gaussian Resource Profile......Page 287
Aggregation......Page 289
Formation Control......Page 290
Social Foraging......Page 291
9.6 Further Issues and Related Work......Page 295
References......Page 296
Section III: Industrial......Page 297
10.1 Introduction......Page 298
10.2 Servo Control......Page 300
10.3 Machine Tools and Machining Processes......Page 302
10.4 Monitoring and Diagnostics......Page 305
10.5 Machining Process Control......Page 308
10.6 Supervisory Control and Statistical Quality Control......Page 310
References......Page 312
11.1 Introduction......Page 316
11.2 Control Methods in Semiconductor Manufacturing......Page 317
11.3 Prototypical Example: Lithography Process......Page 320
Surface Preparation and Resist Coating......Page 321
Soft Bake......Page 322
Alignment and Exposure......Page 323
Final Steps......Page 326
11.4 Stepper Matching (Factory Control)......Page 327
11.5 Rapid Thermal Processing......Page 328
11.6 Plasma Etching......Page 329
11.7 Chemical–Mechanical Planarization......Page 331
References......Page 332
12.1 Introduction and Overview......Page 334
Polymerization Reaction Mechanisms......Page 335
Polymerization Processes......Page 337
Process Characteristics and Control Problems......Page 338
Advanced Control Strategies I: Steady-State Operation......Page 339
Advanced Control Strategies II: Grade Transition......Page 343
Characteristics of Discontinuous Processes......Page 344
Control of Batch Polymerization Processes I: Feedback Control......Page 345
Control of Batch Polymerization Processes II: Optimal Control......Page 348
12.5 Summary and Conclusions......Page 354
References......Page 355
13.1 Introduction......Page 357
13.2 Preliminaries......Page 358
On-Lattice kMC Model of Film Growth......Page 359
Definitions of Surface Height Profile and Film Site Occupancy Ratio......Page 361
Lattice Size Dependence of Film Surface Roughness and SOR......Page 362
Edwards–Wilkinson-Type Equation of Surface Height......Page 364
Dynamic Model of Film SOR......Page 366
Reduced-Order Model for Surface Roughness......Page 367
MPC Formulation......Page 368
13.5 Simulation Results......Page 369
Regulation of Surface Roughness and Film Thickness......Page 370
Simultaneous Regulation of Surface Roughness, Film Porosity, and Film Thickness......Page 371
References......Page 372
14.1 Introduction......Page 374
Continuous Crystallization......Page 375
Batch Protein Crystallization......Page 376
Aerosol Synthesis......Page 377
Particulate Process Model......Page 378
Model Reduction of Particulate Process Models......Page 379
Model-Based Control Using Low-Order Models......Page 381
References......Page 392
15.1 Introduction......Page 395
15.2 Overview of Batch Process Control......Page 396
Problem Formulation of BNMPC......Page 398
NMPC of Batch Reactor Operations......Page 399
Computational Aspects of the BNMPC Approach......Page 401
Real-Time NMPC Algorithm......Page 403
Robust End-Point BNMPC Formulations......Page 404
State Estimation......Page 405
Efficient Development and Identification of Control-Relevant Model......Page 407
Reliable and Fast Solution of the Online Optimization......Page 408
15.5 Setpoint Tracking Batch NMPC of an Industrial Reactor......Page 409
15.6 Hierarchical BNMPC for Simultaneous Setpoint Tracking and Optimization......Page 411
15.7 Robust End-Point Batch-NMPC for the Crystal Size Distribution Control in Cooling Crystallisation......Page 414
15.9 Defining Terms......Page 420
References......Page 421
For Further Information......Page 423
16.1 Introduction......Page 425
Principal Component Analysis......Page 427
Principal Component Regression......Page 428
Independent Component Analysis......Page 429
Partial Least Squares......Page 430
16.3 Areas of Applications......Page 432
Data Analysis......Page 433
Batch Processes......Page 437
Inferential Control......Page 439
Binary Distillation Column......Page 441
16.4 Summary......Page 443
References......Page 444
17.1 Introduction......Page 445
Heuristic Methods......Page 446
Mathematical Methods......Page 449
Combined Methods......Page 450
Steady-State Analysis......Page 452
Plantwide Control Structure Synthesis......Page 453
Results and Discussion......Page 457
Nomenclature......Page 462
References......Page 463
18. Automation and Control Solutions for Flat Strip Metal Processing......Page 467
Main Phases of Flat Strip Processing......Page 468
Realization of an Automation System in Flat Strip Metals Processing......Page 469
Control Technologies Applied to HSM......Page 470
Automatic Gauge Control: The Realization of Thickness Control in Hot Rolling......Page 472
18.4 Modeling and Control of Steel Pickling Process......Page 474
Pickling of Carbon Steel......Page 475
Management and Control of Pickling Processes......Page 476
Pickling Lines Main Components......Page 477
Pickling Line Models......Page 478
18.5 Cold Rolling: Control Applied in Reversing and Tandem Rolling......Page 479
AGC—The Realization of Thickness Control in Cold Rolling......Page 480
Automatic Flatness Control (AFC): Flatness Control in Cold Rolling......Page 482
18.6 The Use of a Multivariable Controller for Deposited Zinc in HDGL: Introduction and Problem Settling......Page 484
The Purpose of a Coating Weight Closed-Loop Control System and Performance Definition......Page 485
The Use of a Cold Coating Gauge in Closed-Loop Control......Page 486
The Purpose of a Closed-Loop Multivariable Controller......Page 487
Purpose of Feedforward Compensation......Page 489
Coating Mathematical Model and Its Implementation......Page 490
Basic Controllers: Supply Pressure Control and Horizontal Position Control......Page 494
Structure of the Multivariable Controller......Page 495
Performances Achieved......Page 496
Acknowledgment......Page 499
References......Page 500
Section IV: Biological and Medical......Page 503
19.1 Introduction......Page 504
19.2 Biochemical Reactor Technology......Page 505
19.4 Dynamic Modeling of Biochemical Reactors......Page 507
19.5 Continuous Operating Mode......Page 508
19.6 Batch and Fed-Batch Operating Modes......Page 510
19.7 Process Control of Biochemical Reactors......Page 511
19.8 Continuous Biochemical Reactors......Page 512
19.9 Fed-Batch Biochemical Reactors......Page 514
19.10 Perspective......Page 516
19.11 Defining Terms......Page 517
References......Page 518
20.1 Introduction......Page 520
Computer Control and CAD/CAM......Page 521
Teleoperation......Page 522
Cooperative Control......Page 523
20.3 Computer-Controlled Robots......Page 524
20.4 Telemanipulation......Page 525
20.5 Cooperative Control......Page 526
20.7 Applications......Page 527
20.8 Future......Page 528
References......Page 529
21.1 Introduction......Page 530
21.2 Stochastic Chemical Kinetics......Page 531
Sample Path Representation and Connection with Deterministic Models......Page 533
Kinetic Monte Carlo Simulations......Page 535
Stochastic Differential Equation Approximations......Page 536
Statistical Moments......Page 537
21.4 Parameter Identification......Page 539
Identifying Transcription Parameters......Page 541
21.5 Examples......Page 542
Deterministic (Reaction Rate) Analysis......Page 543
Stochastic Simulations......Page 544
Normal Moment Closures......Page 545
References......Page 548
22.2 The Crisis in Drug Discovery......Page 551
22.3 Systematic Approaches to Drug Discovery......Page 553
Diabetes......Page 554
HIV Treatment......Page 555
22.5 Some Considerations in Modeling the Human Body as a Dynamical System......Page 556
Compartmental Models......Page 557
References......Page 558
Section V: Electronics......Page 560
Introduction......Page 561
Quadratic Programming......Page 563
23.3 Maximum Attainable Torque......Page 566
Experimental Setup......Page 567
Torque–Current Relationship......Page 568
The Effect of Torque Ripple in Motion Control......Page 570
Torque Saturation......Page 571
Two-Phase Commutation......Page 572
23.7 Modeling and Control of Motor Torque in Terms of Fourier Series......Page 573
23.8 Modification of Commutation Law at High Velocity......Page 577
Simulation......Page 578
Introduction......Page 579
23.10 Modeling of Electric Motors in Terms of Inductance Matrix......Page 580
Voltage Dynamic Equation......Page 582
Self-Tuning Control......Page 583
Input/Output Stable Mechanical Loads......Page 586
23.12 Experiment......Page 587
References......Page 590
24.2 Hybrid State Model of the Boost Converter......Page 591
Performance Index for Boost Converter......Page 593
24.4 Design of HMPC......Page 594
Beginning of Optimization......Page 597
End Optimization......Page 598
24.6 Hardware Implementation......Page 601
References......Page 604
Section VI: Networks......Page 606
25.1 Introduction......Page 607
25.2 Motivational Case Study: WCDMA Power Control......Page 608
25.3 A General Setup for the Analysis of NCSs......Page 611
25.4 Architectures for Control over SNR Constrained AWN Channels......Page 613
Mean Square Stability......Page 615
Design for the Perfect Reconstruction Coding Scheme......Page 617
Design for One-Block Architectures......Page 618
Design for the General Architecture......Page 620
AWN Channels......Page 621
Noiseless Digital Channels with Finite Alphabe......Page 622
Noiseless Digital Channels with Constrained Average Data Rate......Page 624
Bernoulli Erasure Channels......Page 626
25.7 Application of the SNR Approach to WCDMA Power Control......Page 628
Acknowledgment......Page 631
References......Page 632
26.1 Introduction......Page 634
26.2 Network Utility Maximization......Page 635
26.3 Fairness......Page 636
26.4 Distributed Control and Stability......Page 637
26.5 Primal Algorithm for Distributed Utility Maximization......Page 640
26.6 Dual Algorithm for Distributed Utility Maximization......Page 641
26.7 Cross-Layer Design for Wireless Networks......Page 643
Stochastic Channel State and Arrival Processes......Page 648
References......Page 649
Section VII: Special Applications......Page 651
27.1 Introduction......Page 652
27.2 Motion Systems......Page 653
27.3 Feedforward Control Design......Page 656
System Identification—Obtaining the FRF......Page 657
Loopshaping—The SISO Case......Page 658
Loopshaping—The MIMO Case......Page 659
27.5 Control Design for a Metrological AFM......Page 663
Nonparametric Identification......Page 664
Scaling......Page 665
Interaction Analysis......Page 666
Independent Control Design......Page 667
Norm-Based Control Design......Page 668
Experimental Results......Page 671
References......Page 675
Color Control Needs......Page 677
28.2 System Overview......Page 678
Models......Page 679
Spot Color Control......Page 680
1D, 2D, 3D Control: For Rendering High Quality Images......Page 691
Introduction......Page 704
Model Predictive Controller......Page 706
28.5 Conclusion......Page 710
References......Page 711
29.1 Introduction......Page 713
29.2 Markowitz Mean-Variance Portfolio Theory......Page 714
The Single Period Mean-Variance Problem......Page 715
The Solution to the Single Period Mean-Variance Problem......Page 716
Including a Risk-Free Asset......Page 717
The Capital Asset Pricing Model......Page 719
29.3 Modeling Returns over Time......Page 720
A Discrete-Time Model......Page 722
A Continuous-Time Model......Page 723
Problem Formulation......Page 725
Optimal Policy Derivation......Page 726
Formulation as a Linear Quadratic Regulator Problem......Page 727
Example: Intertemporal Hedging......Page 728
29.5 Continuous-Time Portfolio Optimization......Page 730
29.6 Final Remarks......Page 733
References......Page 734
30.1 Introduction......Page 735
The Idealized Bilinear System Model......Page 737
Nomenclature......Page 739
Response Spectra in Structural Design......Page 740
Earthquake Models for Control Design and Evaluation......Page 741
30.3 Performance Measures for Control Design......Page 742
Far-Field Design......Page 744
Lyapunov-Bounded Design......Page 745
Jpeak-Bounded Design......Page 747
Jquad-Bounded Design......Page 749
Output Feedback......Page 751
Inhomogeneity of F(v)......Page 752
Dynamic Limitations......Page 753
30.6 Example......Page 755
30.7 Summary......Page 758
31.1 Introduction......Page 761
Quantum Estimation and Control......Page 762
The Postulates of Quantum Mechanics......Page 765
Open Quantum Systems......Page 766
Convexity and Quantum Mechanics......Page 767
The Harmonic Oscillator......Page 768
Optical Cavity......Page 769
Estimation......Page 771
Control......Page 772
31.4 Quantum Estimation......Page 773
Quantum State Tomography......Page 774
Quantum Process Tomography......Page 779
Hamiltonian Parameter Estimation......Page 785
Quantum Linear Systems......Page 788
Quantum Filtering......Page 790
Quantum Measurement Feedback LQG Control......Page 792
Quantum Measurement Feedback LEQG Control......Page 794
Quantum Coherent Feedback H∞ Control......Page 795
References......Page 799
32.1 System Architecture and Control Objectives......Page 803
Kinematics......Page 806
Equations of Motion......Page 808
32.3 Maneuvering Hydrodynamics and Models......Page 810
Example: Maneuvering Model of a High-Speed Vehicle–Passenger Trimaran......Page 813
32.4 Seakeeping Hydrodynamics and Models......Page 814
Wave Environment......Page 815
Time-Domain Seakeeping Models......Page 817
Frequency-Domain Seakeeping Models......Page 819
Time-Domain Model Approximations......Page 820
Time-Domain Wave Excitation......Page 822
32.5 Models for Maneuvering in a Seaway......Page 823
Observers and Wave Filtering......Page 824
Control Allocation......Page 827
Overview of Vehicle Motion Control Problems......Page 828
32.7 Example Positioning Control of a SurfaceVessel......Page 829
Unconstrained Control Allocation......Page 830
Constrained Control via Input Scaling......Page 831
Simulation Case Study......Page 832
32.8 Example: Course Keeping Autopilot for a Surface Vessel......Page 833
32.9 Conclusion......Page 836
References......Page 837
33.1 Introduction......Page 839
33.2 Combustion Oscillations......Page 840
Feedback Mechanism: A Pendulum Analogy......Page 841
A Dynamic Model of the Combustion......Page 842
Control of Combustion Oscillations......Page 844
33.3 Impinging Jets......Page 849
A Dynamic Model......Page 850
Control of Impinging Tones......Page 853
References......Page 861
34.1 Introduction......Page 864
34.2 AC&R Fundamentals......Page 865
Input–Output Pairs......Page 868
Mass Flow Devices......Page 869
Heat Exchanger Models......Page 870
Simplified System Models......Page 873
Hysteretic On–Off Control......Page 874
Variable Input Control: PID......Page 876
Gain Scheduling......Page 877
34.5 Advanced Control Design......Page 878
Nomenclature......Page 880
References......Page 881