Author(s): C. N. R. Rao, A. Muller, A. K. Cheetham
Edition: 1
Year: 2004
Language: English
Pages: 761
Tags: Специальные дисциплины;Наноматериалы и нанотехнологии;Нанохимия;
3527306862......Page 1
Contents......Page 8
Preface......Page 19
List of Contributors......Page 21
1 Nanomaterials – An Introduction......Page 24
1.1 Size Effects......Page 26
1.2 Synthesis and Assembly......Page 27
1.3 Techniques......Page 28
1.5 Nanoelectronics......Page 31
1.6 Other Aspects......Page 32
Bibliography......Page 34
2.1 Introduction......Page 35
2.2 Defining Nanodimensional Materials......Page 36
2.3 Potential Uses for Nanodimensional Materials......Page 38
2.4 The General Methods Available for the Synthesis of Nanodimensional Materials......Page 40
2.4.1 Precipitative Methods......Page 42
2.4.2 Reactive Methods in High Boiling Point Solvents......Page 43
2.4.3 Hydrothermal and Solvothermal Methods......Page 45
2.4.4 Gas-Phase Synthesis of Semiconductor Nanoparticles......Page 46
2.4.5 Synthesis in a Structured Medium......Page 47
2.5 The Suitability of Such Methods for Scaling......Page 48
2.6 Conclusions and Perspectives on the Future......Page 49
References......Page 50
3.1 Introduction......Page 54
3.3.1 Advantages......Page 56
3.4.1 Phase Transfer of Aqueous Gold Nanoparticles to Non-Polar Organic Solvents......Page 57
3.4.2 Transfer of Organically Soluble Gold Nanoparticles to Water......Page 66
Acknowledgments......Page 71
References......Page 72
4.1 Introduction......Page 74
4.2.1 General Methods......Page 76
4.2.2 Size Control......Page 78
4.2.3 Shape Control......Page 80
4.2.4 Tailoring the Ligand Shell......Page 81
4.3.1 One-Dimensional Arrangements......Page 84
4.3.2 Two-Dimensional Arrays......Page 85
4.3.2.1 Arrays of Metal Nanocrystals......Page 86
4.3.2.2 Arrays of Semiconductor Nanocrystals......Page 88
4.3.2.3 Arrays of Oxide Nanocrystals......Page 89
4.3.2.5 Stability and Phase Behaviour of Two-Dimensional Arrays......Page 91
4.3.3 Three-Dimensional Superlattices......Page 94
4.3.4 Superclusters......Page 96
4.3.6 Nanocrystal Patterning......Page 98
4.4 Emerging Applications......Page 100
4.4.1 Isolated Nanocrystals......Page 101
4.4.2 Collective Properties......Page 105
4.5 Conclusions......Page 109
References......Page 111
5.1 Introduction......Page 117
5.2 Magnetite Particles in Nature......Page 119
5.3.1 Hydrolysis......Page 121
5.3.2 Oxidation......Page 124
5.3.3 Thermolysis......Page 125
5.3.4 Metathesis......Page 126
5.3.5.2 Hydrolysis......Page 128
5.3.5.3 Thermolysis......Page 129
5.4 Prospects......Page 131
References......Page 133
6.1 Sonochemistry......Page 136
6.1.1.1 Sonochemical Synthesis of Powders of Metallic Nanoparticles......Page 139
6.1.1.2 Sonochemical Synthesis of Metallic Colloids......Page 141
6.1.1.3 Sonochemical Synthesis of Metallic Alloys......Page 143
6.1.1.4 Sonochemical Deposition of Nanoparticles on Spherical and Flat Surfaces......Page 144
6.1.1.5 Sonochemical Synthesis of a Polymer-Metal Composite......Page 147
6.1.1.6 Sonochemical Synthesis of Nanometals Encapsulated in a Carbon Matrix......Page 150
6.1.2.1 Sonochemical Synthesis of Transition Metal Oxides from the Corresponding Carbonyls......Page 152
6.1.2.2 Sonochemical Synthesis of Ferrites from the Corresponding Carbonyls......Page 154
6.1.2.3 Sonochemical Preparation of Nanosized Rare-Earth Oxides......Page 156
6.1.2.4 The Sonohydrolysis of Group 3A Compounds......Page 157
6.1.2.5 The Sonochemical Synthesis of Nanostructured SnO(2) and SnO as their Use as Electrode Materials......Page 159
6.1.2.6 The Sonochemical Synthesis of Mesoporous Materials and the Insertion of Nanoparticles into the Mesopores by Ultrasound Radiation......Page 160
6.1.2.8 The Sonochemical Synthesis of Nanosized Hydroxides......Page 166
6.1.2.9 Sonochemical Preparation of Nanosized Titania......Page 167
6.1.2.10 The Sonochemical Preparation of Other Oxides......Page 168
6.1.2.11 Sonochemical Synthesis of Other Nanomaterials......Page 170
6.2 Sonoelectrochemistry......Page 171
6.2.1 Sonoelectrochemical Synthesis of Nanocrystalline Materials......Page 172
6.3 Microwave Heating......Page 175
6.3.1.1 Microwave Synthesis of Nanometallic Particles......Page 178
6.3.1.2 The Synthesis of Nanoparticles of Metal Oxides by MWH......Page 180
Acknowledgements......Page 186
References......Page 187
7.1 Introduction......Page 193
7.2 Solvothermal Synthesis of III–V Nanomaterials......Page 198
7.3 Synthesis of Diamond, Carbon Nanotubes and Carbides......Page 204
7.4 Synthesis of Si(3)N(4), P(3)N(5), Metal Nitrides and Phosphides......Page 209
7.5 Synthesis of BN, B(4)C, BP and Borides......Page 212
7.6 Synthesis of One-Dimensional Metal Chalcogenide Nanocrystallites......Page 216
7.7 Room Temperature Synthesis of Nanomaterials......Page 221
References......Page 227
8.1 Introduction......Page 231
8.2.1.1 Multi-Walled Nanotubes......Page 233
8.2.1.2 Aligned Carbon Nanotube Bundles......Page 235
8.2.1.3 Single-Walled Carbon Nanotubes......Page 237
8.2.2 Structure and Characterization......Page 240
8.2.3 Mechanism of Formation......Page 245
8.2.4.1 Doping with Boron and Nitrogen......Page 247
8.2.4.2 Opening, Filling and Functionalizing Nanotubes......Page 248
8.2.5.1 Electronic Structure and Properties......Page 250
8.2.5.2 Electronic and Electrochemical Devices......Page 251
8.3.1 Preliminaries......Page 262
8.3.2 General Synthetic Strategies......Page 267
8.3.3 Structures......Page 269
8.3.4 Useful Properties of Inorganic Nanotubes......Page 276
8.4.2 Synthetic Strategies......Page 278
8.4.2.1 Vapor Phase Growth of Nanowires......Page 279
8.4.2.2 Other Processes in the Gas Phase......Page 285
8.4.2.3 Solution-Based Growth of Nanowires......Page 288
8.4.2.4 Growth Control......Page 296
8.4.3 Properties of Nanowires......Page 297
References......Page 298
9.1 Introduction......Page 308
9.2 Seed-Mediated Growth Approach to the Synthesis of Inorganic Nanorods and Nanowires......Page 310
9.3 Assembly of Metallic Nanorods: Self-Assembly vs. Designed Chemical Linkages......Page 316
9.4 Reactivity of Metallic Nanoparticles Depends on Aspect Ratio......Page 322
9.5 Conclusions and Future Prospects......Page 327
References......Page 329
Abstract......Page 331
10.1 Introduction......Page 332
10.2.1 Discovery of Oxide-Assisted Growth......Page 334
10.2.2 Oxide-Assisted Nucleation Mechanism......Page 337
10.2.3 Oxide-Assisted Growth Mechanism......Page 339
10.2.4 Comparison between Metal Catalyst VLS Growth and OAG......Page 340
10.3.1 Morphology Control by Substrate Temperature......Page 342
10.3.2 Diameter Control of Nanowires......Page 349
10.3.3 Large-Area Aligned and Long SiNWs via Flow Control......Page 351
10.3.4 Si Nanoribbons......Page 353
10.4.1 Nanocables......Page 355
10.4.2 Metal Silicide/SiNWs from Metal Vapor Vacuum Arc Implantation......Page 356
10.4.3 Synthesis of Oriented SiC Nanowires......Page 357
10.5 Implementation of OAG to Different Semiconducting Materials......Page 358
10.6.1 Stability of H-Terminated SiNW Surfaces......Page 363
10.6.2 Reduction of Metals in Liquid Solutions......Page 366
10.6.3 Chemical Sensing of SiNWs......Page 368
10.6.4 Use of SiNWs as Templates for Nanomaterial Growth......Page 369
10.7.1 Raman and PL of SiNWs......Page 370
10.7.2 Field Emission from Different Si-Based Nanostructures......Page 373
10.7.3 STM and STS Measurements of SiNWs and B-Doped SiNWs......Page 374
10.7.4 Periodic Array of SiNW Heterojunctions......Page 379
10.8.1 High Reactivity of Silicon Suboxide Vapor......Page 382
10.8.2.1 Structural Transition in Silicon Nanostructures......Page 383
10.8.2.3 Silicon Nanotubes......Page 384
10.8.3.1 Structural Properties of Hydrogenated Silicon Nanocrystals and Nanoclusters......Page 386
10.9 Summary......Page 388
Acknowledgement......Page 391
References......Page 392
11.1 Introduction......Page 394
11.2 Structural Transformations......Page 395
11.3 Ultraviolet–Visible Absorption Spectroscopy......Page 397
11.4 Fluorescence Spectroscopy......Page 400
11.5 Electronic Structure Calculations......Page 406
11.5.1 Effective Mass Approximation......Page 407
11.5.2 Empirical Pseudopotential Method......Page 408
11.5.3 Tight-Binding Method......Page 410
11.6 Photoemission Studies......Page 417
11.6.1 Core Level Photoemission......Page 418
11.6.2 Valence Band Photoemission......Page 422
11.7 Concluding Remarks......Page 424
References......Page 425
12.2 Optical Properties......Page 428
12.3 Synthesis......Page 431
12.4 Surface Modification and Bioconjugation......Page 433
12.5 Applications......Page 436
References......Page 439
13.1 Introduction......Page 441
13.2 Nickel Chalcogenides......Page 442
13.3 Group XI Chalcogenides......Page 446
13.3.1.1 Layered Cu(2)Se......Page 447
13.3.1.2 Spherical Cu(2)E......Page 449
13.3.2 Cu(2–x)Te and Ag(2)Te......Page 453
13.3.3 Ag(2)S......Page 456
13.3.4 Ag(2)Se......Page 459
13.4.1 CdS......Page 461
13.5 Ternary MM´E......Page 467
13.6 Metal Pnictides from E(SiMe(3))(3) Reagents......Page 469
13.7 Conclusions and Outlook......Page 470
References......Page 471
14.1 Introduction: Similarities between Nanotechnology in Nature and Chemistry?......Page 475
14.2 Sizes, Shapes, and Complexity of Nano-objects are Determined by the Nature and Variety of the Constituent Building Blocks......Page 476
14.3 Nanoscaled Clusters with Unusual Form–Function Relationships......Page 480
14.4 Perspectives for Materials Science and Nanotechnology: En Route to Spherical-Surface, Nanoporous-Cluster, and Super-Supramolecular Chemistry Including the Option of Modelling Cell Response......Page 488
References......Page 496
15.1 Introduction......Page 499
15.2 Macromolecular Structural Control......Page 500
15.2.1 Living Polymerization......Page 501
15.3 Polymer Conformational Control......Page 503
15.4 Morphology of Block Copolymers......Page 507
15.5 Nanostructures Based on Bulk Phase Separation......Page 509
15.6 Nanostructures Based on Lyotropic Mesophases......Page 516
15.6.1 Core-Crosslinked Systems......Page 518
15.6.2 Shell-Crosslinked Systems......Page 520
15.6.3 Nanocages......Page 523
15.7 Rod–Coil Diblock Copolymers......Page 525
15.8 Nanostructures from Polymerized Surfactant Assemblies......Page 530
15.9 Summary and Outlook......Page 536
Acknowledgements......Page 537
References......Page 538
16.2 Preparation and Characterization of Porous Silicon Substrates......Page 541
16.3 Surface Chemistry of Porous Silicon Surfaces......Page 545
16.4.1 Bioactive Porous Silicon......Page 550
16.4.2 Micro Enzyme Reactors (μIMERS) and Total Analysis Systems (μTAS)......Page 554
16.4.3 Porous Silicon Sensors......Page 555
16.4.4 Explosive Porous Silicon......Page 562
16.4.5 Desorption/Ionization on Silicon Mass Spectrometry (DIOS-MS)......Page 563
16.5 Conclusion......Page 569
References......Page 570
17.1 Introduction......Page 574
17.2 Chemical Reactions on Point Defects of Oxide Surfaces......Page 575
17.3.1 Catalytic Processes on Free Metal Clusters......Page 578
17.3.2.1 Single Atoms on Oxide Surfaces......Page 585
17.3.2.2 Size-Selected Clusters on Oxide Surfaces......Page 589
17.3.3.1 A Newly Designed Pulsed Valve for Molecular Beam Experiments......Page 601
17.3.3.2 Size-Distributed Clusters on Oxide Surfaces......Page 603
17.4 Chemical Reactions Induced by Confined Electrons......Page 605
References......Page 609
18.1 Introduction......Page 612
18.2 Stability of Open-Framework Materials......Page 613
18.3 Aluminosilicate Zeolites......Page 614
18.4.1 Aluminum Phosphates......Page 618
18.4.2 Phosphates of Gallium and Indium......Page 621
18.4.3 Tin(II) Phosphates and Antimony(III) Phosphates......Page 622
18.4.4.1 Molybdenum and Vanadium Phosphates......Page 623
18.4.4.2 Iron Phosphates......Page 624
18.4.4.4 Copper and Nickel Phosphates......Page 626
18.4.4.5 Zirconium and Titanium Phosphates......Page 628
18.5.1 Sulfides and Selenides......Page 629
18.5.4 Binary Metal Oxides......Page 630
18.6 Hybrid Nanoporous Materials......Page 631
18.6.1 Coordination Polymers......Page 632
18.6.2 Hybrid Metal Oxides......Page 635
18.7 Conclusions......Page 637
References......Page 639
19.2 Photoinduced Charge Transfer Processes in Semiconductor Nanoparticle Systems......Page 643
19.3 Photoinduced Transformations of Metal Nanoparticles......Page 645
19.3.1 Transient Bleaching of the Surface Plasmon Band......Page 646
19.3.2 Laser Induced Fusion and Fragmentation of Metal Nanoclusters......Page 647
19.3.3 Photoinduced Energy and Electron Transfer Process between Excited Sensitizer and Metal Nanocore......Page 648
19.4.1 Nanostructured Metal Oxide Films......Page 650
19.4.2 Nanostructured Oxide Films Modified with Dyes and Redox Chromophores......Page 651
19.4.3 Photocurrent Generation......Page 653
19.5 Electrochemistry of Metal Nanostructures......Page 654
19.6 Semiconductor–Metal Nanocomposites......Page 655
19.6.1 Improving the Efficiency of Photocatalytic Transformations......Page 656
19.6.2 Fermi Level Equilibration......Page 657
19.7 Concluding Remarks......Page 658
References......Page 659
20.1 Introduction......Page 669
20.2 Preparation of Nanostructures......Page 670
20.3 Electrochemistry with Metallic Nanoparticles......Page 672
20.3.1 Monolayer-Protected Nanoclusters......Page 674
20.3.2 Nanoelectrode Ensembles......Page 676
20.4 Single Electron Events......Page 680
20.5 Probing Nanoparticles using Electrochemistry Coupled with Spectroscopy......Page 687
20.6.1 Biosensors......Page 693
20.6.2 Chemical Sensors......Page 697
20.7 Electrocatalysis......Page 701
20.8 Summary and Perspectives......Page 703
References......Page 704
21.1 Introduction......Page 711
21.2 Template Fabrication......Page 713
21.2.1 Polycarbonate Etched Track Templates......Page 714
21.2.2 Fabrication of Anodized Alumina Membrane......Page 716
21.2.3 Anodized Alumina Membrane as a Mask for Physical Vapor Deposition......Page 718
21.2.4 Templates Made in Block Copolymers......Page 719
21.3 Fabrication of Nanostructures in the Templates......Page 720
21.3.1 Electrodeposition......Page 721
21.3.2 Sol–Gel Method......Page 725
21.3.3 CVD Method......Page 727
21.4 Scanning Probe Based Anodic Oxidation as a Tool for the Fabrication of Nanostructures......Page 729
21.4.1 Oxidation of Metallic Substrates......Page 732
21.4.2 Oxidation of Semiconducting Substrates......Page 733
21.5 Use of Scanning Probe Microscopy in Dip Pen Nanolithography......Page 735
21.6 Use of Scanning Probe Microscopy in Nanomanipulation......Page 739
21.7 Nano-Electromechanical Systems......Page 741
References......Page 743
Index......Page 747