The Britannica Guide to Statistics and Probability (Math Explained)

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): Erik Gregersen
Series: Math Explained
Edition: 1
Publisher: Britannica Educational Publishing
Year: 2011

Language: English
Pages: 335
Tags: Математика;Теория вероятностей и математическая статистика;

TITLE......Page 4
COPYRIGHT......Page 5
CONTENTS......Page 6
INTRODUCTION......Page 13
GAMES OF CHANCE......Page 22
RISKS, EXPECTATIONS, AND FAIR CONTRACTS......Page 25
PROBABILITY AS THE LOGIC OF UNCERTAINTY......Page 27
THE PROBABILITY OF CAUSES......Page 31
POLITICAL ARITHMETIC......Page 34
SOCIAL NUMBERS......Page 35
A NEW KIND OF REGULARITY......Page 38
STATISTICAL PHYSICS......Page 39
THE SPREAD OF STATISTICAL MATHEMATICS......Page 40
STATISTICAL THEORIES IN THE SCIENCES......Page 42
BIOMETRY......Page 43
SAMPLES AND EXPERIMENTS......Page 46
THE MODERN ROLE OF STATISTICS......Page 47
CHAPTER 2 PROBABILITY THEORY......Page 49
APPLICATIONS OF SIMPLE PROBABILITY EXPERIMENTS......Page 51
THE PRINCIPLE OF ADDITIVITY......Page 54
MULTINOMIAL PROBABILITY......Page 55
THE BIRTHDAY PROBLEM......Page 58
CONDITIONAL PROBABILITY......Page 60
APPLICATIONS OF CONDITIONAL PROBABILITY......Page 61
INDEPENDENCE......Page 64
BAYES’S THEOREM......Page 65
RANDOM VARIABLES......Page 66
PROBABILITY DISTRIBUTION......Page 67
EXPECTED VALUE......Page 69
VARIANCE......Page 71
AN ALTERNATIVE INTERPRETATION OF PROBABILITY......Page 73
THE LAW OF LARGE NUMBERS......Page 77
THE CENTRAL LIMIT THEOREM......Page 79
THE POISSON APPROXIMATION......Page 81
INFINITE SAMPLE SPACES......Page 83
THE STRONG LAW OF LARGE NUMBERS......Page 85
MEASURE THEORY......Page 86
PROBABILITY DENSITY FUNCTIONS......Page 90
CONDITIONAL EXPECTATION AND LEAST SQUARES PREDICTION......Page 93
THE POISSON PROCESS......Page 95
BROWNIAN MOTION PROCESS......Page 96
STATIONARY PROCESSES......Page 103
MARKOVIAN PROCESSES......Page 105
THE EHRENFEST MODEL OF DIFFUSION......Page 106
THE SYMMETRIC RANDOM WALK......Page 108
QUEUING MODELS......Page 109
INSURANCE RISK THEORY......Page 112
MARTINGALE THEORY......Page 113
CHAPTER 3 STATISTICS......Page 116
DESCRIPTIVE STATISTICS......Page 117
TABULAR METHODS......Page 118
GRAPHICAL METHODS......Page 119
NUMERICAL MEASURES......Page 120
PROBABILITY......Page 123
RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS......Page 124
SPECIAL PROBABILITY DISTRIBUTIONS......Page 126
ESTIMATION......Page 128
SAMPLING AND SAMPLING DISTRIBUTIONS......Page 129
ESTIMATION OF A POPULATION MEAN......Page 130
ESTIMATION PROCEDURES FOR TWO POPULATIONS......Page 132
HYPOTHESIS TESTING......Page 133
BAYESIAN METHODS......Page 136
EXPERIMENTAL DESIGN......Page 137
REGRESSION AND CORRELATION ANALYSIS......Page 139
TIME SERIES AND FORECASTING......Page 146
NONPARAMETRIC METHODS......Page 147
ACCEPTANCE SAMPLING......Page 149
STATISTICAL PROCESS CONTROL......Page 150
SAMPLE SURVEY METHODS......Page 151
DECISION ANALYSIS......Page 153
CHAPTER 4 GAME THEORY......Page 155
CLASSIFICATION OF GAMES......Page 157
ONE-PERSON GAMES......Page 159
GAMES OF PERFECT INFORMATION......Page 160
GAMES OF IMPERFECT INFORMATION......Page 161
MIXED STRATEGIES AND THE MINIMAX THEOREM......Page 163
UTILITY THEORY......Page 166
TWO-PERSON VARIABLE-SUM GAMES......Page 167
COOPERATIVE VERSUS NONCOOPERATIVE GAMES......Page 169
THE NASH SOLUTION......Page 171
THE PRISONERS’ DILEMMA......Page 172
SEQUENTIAL AND SIMULTANEOUS TRUELS......Page 180
POWER IN VOTING: THE PARADOX OF THE CHAIR’S POSITION......Page 184
THE VON NEUMANN–MORGENSTERN THEORY......Page 189
THE BANZHAF VALUE IN VOTING GAMES......Page 193
CHAPTER 5 COMBINATORICS......Page 198
EARLY DEVELOPMENTS......Page 199
COMBINATORICS DURING THE 20TH CENTURY......Page 201
PERMUTATIONS AND COMBINATIONS......Page 203
RECURRENCE RELATIONS AND GENERATING FUNCTIONS......Page 205
PARTITIONS......Page 206
THE FERRERS DIAGRAM......Page 207
THE PRINCIPLE OF INCLUSION AND EXCLUSION: DERANGEMENTS......Page 210
THE MÖBIUS INVERSION THEOREM......Page 212
SPECIAL PROBLEMS......Page 213
SYSTEMS OF DISTINCT REPRESENTATIVES......Page 214
RAMSEY’S NUMBERS......Page 215
BIB (BALANCED INCOMPLETE BLOCK) DESIGNS......Page 216
PBIB (PARTIALLY BALANCED INCOMPLETE BLOCK) DESIGNS......Page 219
ORTHOGONAL LATIN SQUARES......Page 221
ORTHOGONAL ARRAYS AND THE PACKING PROBLEM......Page 223
DEFINITIONS......Page 225
ENUMERATION OF GRAPHS......Page 226
CHARACTERIZATION PROBLEMS OF GRAPH THEORY......Page 227
PLANAR GRAPHS......Page 229
THE FOUR-COLOUR MAP PROBLEM......Page 230
EULERIAN CYCLES AND THE KÖNIGSBERG BRIDGE PROBLEM......Page 232
COMBINATORIAL GEOMETRY......Page 233
SOME HISTORICALLY IMPORTANT TOPICS OF COMBINATORIAL GEOMETRY......Page 235
METHODS OF COMBINATORIAL GEOMETRY......Page 241
JEAN LE ROND D’ALEMBERT......Page 245
THOMAS BAYES......Page 249
DANIEL BERNOULLI......Page 250
JAKOB BERNOULLI......Page 252
BHASKARA II......Page 254
LUDWIG EDUARD BOLTZMANN......Page 255
GEORGE BOOLE......Page 256
GIROLAMO CARDANO......Page 258
ART HUR CAYLEY......Page 260
FRANCIS YSIDRO EDGEWORTH......Page 262
PIERRE DE FERMAT......Page 263
SIR RONALD AYLMER FISHER......Page 266
JOHN GRAUNT......Page 268
PIERRE-SIMON, MARQUIS DE LAPLACE......Page 269
ADRIEN-MARIE LEGENDRE......Page 272
ABRAHAM DE MOIVRE......Page 275
JOHN F. NASH, JR.......Page 276
JERZY NEYMAN......Page 277
KARL PEARSON......Page 278
SIR WILLIAM PETTY......Page 280
SIMÉON-DENIS POISSON......Page 281
ADOLPHE QUETELET......Page 283
JAKOB STEINER......Page 284
JAMES JOSEPH SYLVESTER......Page 285
JOHN VON NEUMANN......Page 287
BAYES’S THEOREM......Page 292
BINOMIAL DISTRIBUTION......Page 294
CENTRAL LIMIT THEOREM......Page 296
CHEBYSHEV’S INEQUALITY......Page 297
DECISION THEORY......Page 298
ERROR......Page 299
ESTIMATION......Page 300
INDIFFERENCE......Page 301
INTERVAL ESTIMATION......Page 302
LAW OF LARGE NUMBERS......Page 303
LEAST SQUARES APPROXIMATION......Page 304
MEAN......Page 306
NORMAL DISTRIBUTION......Page 309
PERMUTATIONS AND COMBINATIONS......Page 311
POINT ESTIMATION......Page 314
POISSON DISTRIBUTION......Page 315
QUEUING THEORY......Page 316
SAMPLING......Page 317
STOCHASTIC PROCESS......Page 319
STUDENT’S T-TEST......Page 320
GLOSSARY......Page 322
PROBABILITY THEORY......Page 325
GAME THEORY......Page 326
INDEX......Page 327
BACK COVER......Page 335