Tectonic Geomorphology of Mountains: A New Approach to Paleoseismology

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

With a balance of theory and practical applications, Tectonic Geomorphology of Mountains is essential reading for research geologists and upper-level undergraduate and graduate students in the earth sciences.
  • This book describes how tectonic events influence geomorphic processes and explores how landscapes respond to tectonic deformation in the ways in which they are weathered, washed, and abraded
  • Uses new approaches to enhance theoretical models of landscape evolution and to solve practical problems such as the assessment of earthquake hazards
  • Includes previously unpublished research and theory
  • Examines how to use key landforms as reference levels in changing landscapes, estimate rates of mountain-range uplift, and map seismic shaking caused by prehistorical earthquakes
  • Presents a diverse range of examples from around the world

Author(s): William B. Bull
Publisher: Wiley-Blackwell
Year: 2007

Language: English
Pages: 329

Tectonic Geomorphology of Mountains: A New Approach to Paleoseismology......Page 1
Contents......Page 7
Preface......Page 10
1 Scrunch and Stretch Bedrock Uplift......Page 13
1.1 Introduction......Page 15
1.2.1 Isostatic and Tectonic Uplift......Page 18
1.2.2 Stretch and Scrunch Tectonics......Page 24
1.3 Landscape Responses to Regional Uplift......Page 35
2.1 Themes and Topics......Page 39
2.2.2 Base-Level Change......Page 40
2.2.3 The Base Level of Erosion......Page 43
2.2.4 The Changing Level of the Sea......Page 45
2.2.5 Spatial Decay of the Effects of Local Base-Level Changes......Page 49
2.3 Threshold of Critical Power in Streams......Page 51
2.3.1 Relative Strengths of Stream Power and Resisting Power......Page 53
2.4.1 Classification of Stream Terraces......Page 54
2.4.2 Feedback Mechanisms......Page 57
2.4.3 Dynamic and Static Equilibrium......Page 58
2.5 Time Lags of Response......Page 61
2.5.1 Responses to Pulses of Uplift......Page 62
2.5.2 Perturbations that Limit Continuity of Fluvial Systems......Page 63
2.5.3 Lithologic and Climatic Controls of Relaxation Times......Page 66
2.5.4 Time Spans Needed to Erode Landforms......Page 69
2.6.1 Straths, Stream-Gradient Indices, and Strath Terraces......Page 70
2.6.2 Modulation of Stream-Terrace Formation by Pleistocene–Holocene Climatic Changes......Page 77
2.7 Nontectonic Base-Level Fall and Strath Terrace Formation......Page 78
2.8 Hydraulic Coordinates......Page 81
3.1 Introduction......Page 87
3.2.1 Faceted Spur Ridges......Page 91
3.2.2 Mountain–Piedmont Junctions......Page 95
3.2.3 Piedmont Forelands......Page 98
3.3.1 Different Ways to Study Active Faults......Page 109
3.3.2 Segmentation Concepts and Classification......Page 116
3.3.3 Fault-Segment Boundaries......Page 117
3.3.4 Normal Fault Surface Ruptures......Page 118
3.3.5 Strike-Slip Fault Surface Ruptures......Page 125
3.4 Summary......Page 127
4.1 Tectonic Setting of the North America–Pacific Plate Boundary......Page 129
4.2.1 Geomorphic Tools For Describing Relative Uplift Rates......Page 131
4.2.1.1 Mountain-Front Sinuosity......Page 134
4.2.1.2 Widths of Valleys.......Page 136
4.2.1.3 Triangular Facets......Page 139
4.2.2 Diagnostic Landscape Classes of Relative Tectonic Activity......Page 140
4.2.3.1 Response Time Complications and Strike-Slip Faulting......Page 153
4.2.3.2 Maps of Relative Uplift .......Page 157
4.3 Summary......Page 176
5.1 General Features......Page 177
5.2 Scarp Morphology Changes with Time......Page 184
5.2.1 Changes in Scarp Height......Page 185
5.2.2 Decreases in Maximum Scarp Slope......Page 186
5.2.3 Diffusion-Equation Modeling.......Page 187
5.3 Climatic Controls of Fault-Scarp Morphology......Page 193
5.4 Lithologic Controls of Fault-Scarp Morphology......Page 196
5.4.1 Fault Rupture of Different Materials......Page 197
5.4.2 Lithologic Controls on an 1887 Fault Scarp.......Page 199
5.4.2.1 Geomorphic Processes......Page 202
5.4.2.2 Scarp Materials......Page 205
5.4.2.3 Scarp Morphology......Page 206
5.5 Laser Swath Digital Elevation Models......Page 208
5.6.1 Alluvium......Page 213
5.6.2 Bedrock......Page 216
5.7 Summary......Page 219
6.1 Paleoseismology Goals......Page 221
6.2.1.1 Tectonic Setting......Page 224
6.2.1.2 Background and Procedures......Page 227
6.2.1.3 Diagnostic Lichen-Size Peaks......Page 237
6.2.1.4 Tree-Ring Analyses......Page 239
6.2.1.5 Alpine Fault Earthquakes......Page 253
6.2.1.6 Recent Marlborough Earthquakes......Page 258
6.2.2 California Earthquakes......Page 267
6.2.2.1 Calibration of Lichen Growth Rates......Page 269
6.2.2.2 Recent Cliff Collapse.......Page 270
6.2.2.3 Rockfall Processes in Glaciated Valleys.......Page 274
6.2.2.4 San Andreas Fault Earthquakes......Page 277
6.2.2.5 Lichenometry and Precise Radiocarbon Dating Methods......Page 282
6.3 Summary......Page 285
References Cited......Page 287
Index......Page 317