Systems of Linear Partial Differential Equations and Deformations of Pseudogroup Structures

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

The main goal of these notes is the description of a non-linear complex into which the integrability (or compatibility) condition is inserted as a non-linear operator in such a way that exactness implies the integrability of the almost-structure (existence of local coordinates for the structure) or, by the introduction of parameters, the existence of a (germ of) deformation of the structure. To the non-linear complex are attached some fundamental identities and a structure equation. The non-linear complex is a finite form of the initial portion of a linear complex which is a differential graded Lie algebra. The operators in the non-linear and linear complexes are of first order.

Author(s): Antonio Kumpera, Donald Clayton Spencer
Series: Seminaire de mathematiques superieures
Publisher: Les Presses de l'Universite de Montreal
Year: 1974

Language: English
Pages: 98