With the ultimate goal of systematically and robustly defining the specific perturbations necessary to alter a cellular phenotype, systems metabolic engineering has the potential to lead to a complete cell model capable of simulating cell and metabolic function as well as predicting phenotypic response to changes in media, gene knockouts/overexpressions, or the incorporation of heterologous pathways. In Systems Metabolic Engineering: Methods and Protocols, experts in the field describe the methodologies and approaches in the area of systems metabolic engineering and provide a step-by-step guide for their implementation. Four major tenants of this approach are addressed, including modeling and simulation, multiplexed genome engineering, ‘omics technologies, and large data-set incorporation and synthesis, all elucidated through the use of model host organisms. Written in the highly successful Methods in Molecular Biology™ series format, chapters include introductions on their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls.
Comprehensive and cutting-edge, Systems Metabolic Engineering: Methods and Protocols serves as an ideal guide for metabolic engineers, molecular biologists, and microbiologists aiming to implement the most recent approaches available in the field.