System Theory: a Hilbert Space Approach

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Intuitively, a system is a black box whose inputs and outputs are functions of time (or vectors of such functions). As such, a natural model for a system is an operator defined on a function space. This observation and its corollary to the effect that system theory is a subset of operator theory, unfortunately, proved to be the downfall of early researchers in the field. The projection theorem was used to construct optimal controllers that proved to be unrealizable, operator factorizations were used to construct filters that were not causal, and operator invertibility criteria were used to construct feedback systems that were unstable. The difficulty lies in the fact that the operators encountered in system theory are defined on spaces of time functions and, as such, must satisfy a physical realizability (or causality) condition to the effect that the operator cannot predict the future. Although this realizability condition usually takes care of itself in the analysis problems of classical applied mathematics, it must be externally imposed on the synthesis problems that are central to system theory.

Author(s): Avraham Feintuch, Richard Sacks
Publisher: ACADEMIC PRESS (FANTOMASPING)
Year: 1982

Language: English
Commentary: FANTOMASPING
City: New York
Tags: System Theory: a Hilbert Space Approach