Synthesis and Applications of Nanomaterials and Nanocomposites

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book brings together multiple aspects of the recent research conducted in the field of nanotechnology covering topics such as the synthesis of various nanoparticles, nanorods, graphene, graphene oxide-metal composites, characterization of these materials, and ample aspects of various applications including in heavy metal sensing, optoelectronic devices, gas sensing, solar cells, biomedical sensors, role in the drug delivery, and waste-water treatment. The book is of interest to early career researchers, who are trying to grasp multiple aspects of nanomaterials and nanocomposite synthesis and its potential applications.

Author(s): Imran Uddin, Irfan Ahmad
Series: Composites Science and Technology
Publisher: Springer
Year: 2023

Language: English
Pages: 397
City: Singapore

Foreword
Preface
Contents
About the Editors
Synthesis
Advances in Synthesis and Defect Properties of Halide Perovskite Nanocrystals: Experimental and Theoretical Perspectives
1 Introduction
2 Introducing MHP NCs: Crystal Structure and Defect-Tolerance
3 Synthesis Strategies/Methods for MHPs
3.1 Hot-Injection (HI) Method: Colloidal Synthesis
3.2 Ligand-Assisted Reprecipitation (LARP) Method
3.3 Alternate Approaches for the Synthesis of LHP NCs
4 Defect Physics in Halide Perovskites
4.1 Defects in Semiconductors: An Overview
4.2 Halide Perovskites and Defects
5 Summary
References
Synthesis and Applications of Graphene and Its Nanocomposites
1 Introduction
2 Synthesis of Graphene
2.1 Epitaxial Growth
2.2 Chemical Vapour Deposition (CVD)
2.3 Exfoliation of Graphite
3 Liquid-Phase Exfoliation (LPE) Synthesis
4 Characterization of Graphene
4.1 Raman Spectroscopy
4.2 Selected Area Electron Diffraction (SAED)
4.3 Microscopic Techniques
5 Applications
5.1 Electronics
5.2 Healthcare
5.3 Energy
5.4 Environmental Remediation
5.5 Sensing
5.6 Protective Coatings
6 Graphene Nanocomposites
6.1 Polymer-Graphene NCs
6.2 Metal-Graphene NCs
6.3 Metal Oxide-Graphene NCs
6.4 Metal Sulfide-Graphene NCs
7 Summary and Future Prospects
References
Synthesis of Graphene Oxide and Its Metal Composites
1 Introduction
2 Synthesis of Graphene Oxide
2.1 Top-Down Approach
2.2 Bottom-Up Approach
3 Properties of Graphene Oxide
4 Applications of Graphene Oxide
5 Economical Aspects of Graphene Oxide
6 Functionalisation of Graphene Oxide with Metal Nanoparticles
7 Graphene Oxide Nanocomposites
References
Synthesis of Self-stabilized Metal-Oxide and Metal-Hydroxide Nanorods
1 Introduction
2 Electrochemical Synthesis of Metal Hydroxide Nanorods
2.1 Mechanism
2.2 Results and Discussion
3 Electrochemical Synthesis of Metal Oxide Nanorods
4 Effects of Parameter Variations on the Aspect Ratio of NRs
5 Conclusions
References
Structure and Stability of Modern Electrolytes in Nanoscale Confinements from Molecular Dynamics Perspective
1 Introduction
2 Stability of Electrolytes
2.1 Process of Deintercalation
2.2 Dependence on the Surface Area and Separation of Confining Sheets
2.3 Dependence on the Confinement Flexibility
2.4 Dependence on the Electrolyte Concentration
3 Mechanism of Electrolyte Deintercalation
4 Structure of Electrolytes Within the Confinement
5 Structural Changes During Electrolyte Deintercalation
6 Summary and Future Directions
References
Applications: Biological
Synthesis and Biomedical Application of Coinage-Metal Nanoparticle and Their Composite
1 Introduction
2 Synthetic Routes for Coinage-Metal Nanoparticle
3 Biomedical Applications
3.1 Coinage-Metal Nanoparticles to Fight Against Multidrug-Resistant Bacteria
3.2 Photothermal Therapy
3.3 Photodynamic Therapy
3.4 Coinage-Metal Nanoparticle-Enabled Bioimaging
3.5 Sensing
3.6 Drug Delivery
4 Conclusion
References
Role of Inorganic Nanocomposite Materials in Drug Delivery Systems
1 Introduction
2 Inorganic Nanoparticles
2.1 Classes of Inorganic Nanoparticles as Drug Delivery Vehicles
3 Characteristics of Nanoparticles and Drug Delivery Parameters
3.1 Particle Size
3.2 Particle Charge
3.3 Particle Shape
3.4 Drug Loading
3.5 Drug Release
3.6 Nanoparticle Uptake and Transport
4 Applications of Inorganic Nanoparticles
4.1 Inorganic Nanoparticles in Oncology
4.2 Inorganic Nanoparticles in Skin Regeneration Treatment
4.3 Inorganic Nanoparticles Against MDR Bacteria
5 Conclusion
References
Bio-nanocomposites: A Next Generation Food Packaging Materials
1 Introduction
2 Type of Food and Factors Responsible for Spoilage of Food
3 Microbial Food Spoilage
3.1 Bacteria
3.2 Yeast
3.3 Molds
4 Chemical Food Spoilage
4.1 Enzymatic Browning
4.2 Non-enzymatic Browning
5 Physical Food Spoilage
6 Condition Required for Spoilage of Food
6.1 Nature of Food
6.2 Activity of Water
6.3 pH
6.4 Temperature
6.5 Gaseous Conditions
6.6 Interaction Phenomena
7 Basic Properties Required for Food Packaging Materials
7.1 Barrier properties
8 Food Packaging Materials
8.1 Paper as Packaging Materials
8.2 Glass and Metals Based Packaging Materials
9 Petroleum Polymers Based Packaging Material and Its Draw Back
9.1 Polyethylene (PE)
9.2 Polypropylene (PP)
9.3 PET Poly (Ethylene Terephthalate)
9.4 PVC (Polyvinyl Chloride)
10 Biopolymers Based Packaging Material and Its Benefit
10.1 Natural Polymers
10.2 Starch
10.3 Cellulose
10.4 Chitosan
10.5 Protein-Whey Protein
10.6 Zein
10.7 Gluten
10.8 Microbial Polymer
10.9 Polyhydroxyalkanoates (PHA)
10.10 Synthetic/Artificial Polymers
10.11 Polyglycolide
10.12 Polylactic Acid (PLA)
10.13 Polybutylene Succinate (PBS)
10.14 Polycaprolactone (PCL)
11 Nanomaterials Used in Food Packaging
11.1 Silver NPs (AgNPs)
11.2 Nanoclay
11.3 ZnO
11.4 Titanium NPs (TiO2-NPs)
11.5 Copper and Copper Oxide (Cu/CuO)
11.6 Magnetic Nanoparticles (Fe3O4)
11.7 Nano-starch
11.8 Carbon Nanotubes (CNTs)
11.9 Nano-silica
12 US and Indian Safety Guidelines in Food Packaging
13 Obstacles in Commercialization
14 Future Trends
References
Applications: Miscellaneous
Synthesis of Silver and Copper Nanowires and Their Application for Transparent Conductors
1 Introduction
2 Synthesis of Silver and Copper Nanowires
2.1 Polyol Method of Silver Nanowires (AgNWs)
2.2 Coarsening Dynamics of Metal Nanowire
2.3 Synthesis of Copper Nanowires
2.4 Summary
3 Application of Metal Nanowires in Transparent Conductors
3.1 Preparation of TC
3.2 Methods to Upgrade the Optoelectronic Performance
3.3 Stability and Protection
3.4 Conducting Mechanism of Networks Made of 1D Conductive Materials
3.5 Applications in Optoelectronic Devices
3.6 Summary
4 Perspective
References
Synthesis of Quantum Dots and Its Application in Heavy Metal Sensing
1 Introduction
2 Mechanistic Insight of Human Health Effects of Heavy Metals
3 Designing and Development of Sensors for Heavy Metals Toxicity
3.1 Fluorescent Aptaswitch for Heavy Metal Detection
3.2 Heavy Metal Ion Sensors Based on Organic Dyes
3.3 Quantum Dots as Probe for Inorganic Metal Detection
4 Important Trends and Challenges in Present Scenario
5 Probable Steps for Improving Sensitivity and Selectivity of Individual Metal Ions
6 Concluding Remark
References
Synthesis of Magnetic Ferrite and TiO2-Based Nanomaterials for Photocatalytic Water Splitting Applications
1 Introduction
2 Semiconductor Photocatalysis
3 Titanium Dioxide Photocatalyst
4 Synthesis of TiO2 Photocatalytic Nanoparticles
4.1 Synthesis of Defective TiO2 Photocatalytic Nanoparticles
5 Modification of TiO2
5.1 Metal Co-Catalyst
5.2 Cation or Anion Doping
5.3 Dye Sensitizing
6 Introduction to Ferrites
7 Synthesis of Ferrites
7.1 Co-Precipitation Method
7.2 Sol Gel Method
8 Water Splitting Application
8.1 The Effect of Cocatalyst
8.2 Ferrites Based Heterojunction
9 Concluding Remarks
References
Carbon and Metal Doped Polyaniline (PANI) for Energy Storage
1 Introduction
2 Fundamentals of Supercapacitors
3 Types of Supercapacitors
3.1 Electrochemical Double Layer Capacitors
3.2 Electrochemical Pseudocapacitors
3.3 Hybrid Electrochemical Capacitors
4 Electrochemical Evaluation
5 Polyaniline PANI
5.1 PANI-Based Materials for Pseudocapacitors
6 PANI/Carbon Based Material Composites
6.1 PANI/Activated Carbon
6.2 PANI/Carbon Nanotubes
6.3 PANI/Carbon Fiber
6.4 PANI/Graphene Electrode Materials
6.5 PANI/Graphene Quantum Dots Electrode Materials
7 PANI/Metal Compounds
8 Conclusion
References
Ceria-Based Nano-composites: A Comparative Study on Their Contributions to Important Catalytic Processes
1 Introduction
1.1 Catalysis: General Overview
1.2 Ceria Based Catalysts
2 Ceria-Based Composites
2.1 Ceria-Metal / Metal Oxide Composites
2.2 Metal Support Interaction
2.3 CeO2-Coinage Metal Composites
3 Application of CeO2 Based Nanocomposites in Different Reactions
3.1 Water Gas Shift Reaction
3.2 Preferential Oxidation of CO (CO-PROX)
3.3 CO2 Mitigation Reactions
3.4 Alcohol Oxidation Reaction
3.5 Suzuki–Miyaura Coupling
3.6 Photocatalytic Reactions with CeO2 Based Nanocomposites
3.7 Electrocatalytic Reactions with CeO2 Based Nanocomposites
4 Conclusion
References