Synergy Development in Renewables Assisted Multi-carrier Systems

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book explores the different aspects of energy in human life especially expressing the advanced technologies in renewable energy resources. Due to the environmental pollution caused by fossil fuels and the non-permanent nature of these resources, the move towards the use of renewable energy has accelerated. In recent years, many attempts have been made to improve energy systems' performance by using multi-generation units, and these set-ups have been analyzed from the perspective of energy, exergy, economics, and environmental indicators. The book's primary goal is the effort to introduce new methods for assessing and upgrading the synergy. Therefore it examines sustainable practices such as water-energy-food nexus in poly-generation units, novel desalination systems, and smart greenhouses. One of the significant issues in these energy systems is the storage methods; for instance, carbon capture to reduce environmental pollution and the hydrogen store for the utilization in supplementary fuel. Also, robust optimization, uncertainty and risk-aware probabilistic analysis, energy management, and power supply of sensitive places such as oil rig platforms by renewables are examined.

Author(s): Majid Amidpour, Mohammad Ebadollahi, Farkhondeh Jabari, Mohammad-Reza Kolahi, Hadi Ghaebi
Series: Green Energy and Technology
Publisher: Springer
Year: 2022

Language: English
Pages: 528
City: Cham

Preface
Contents
Part I Efficiency Improvement from Energy, Exergy, Economic, and Environmental Viewpoints, and Water, Energy, and Food Nexus
1 Exergoeconomic Analysis of Energy Conversion Systems: From Fundamentals to Applications
1.1 Introduction
1.2 Problem Formulation
1.2.1 On Energy Metrics
1.2.2 Components of Exergoeconomic Analysis
1.3 Illustrative Examples and Discussions
1.3.1 Standalone Component (Heat Exchanger Analysis)
1.3.2 Multi-Component System (Desalination System Analysis)
1.4 Conclusion
References
2 Efficiency Improvement and Cost Analysis of a New Combined Absorption Cooling and Power System
2.1 Introduction
2.2 System Description
2.3 System Modeling and Simulation
2.3.1 Assumptions and Input Data
2.3.2 Energy Analysis
2.3.3 Exergy Analysis
2.3.4 Exergoeconomic Evaluation
2.3.5 Evaluation Parameters of the Cogeneration System
2.4 Results and Discussion
2.4.1 Validation
2.4.2 Numerical Results
2.4.3 Sensitivity Analysis
2.4.4 Cycle Optimization
2.5 Conclusion
References
3 Reliability and Availability Consideration in Design of an Ammonia-Water CHP System for a Low-Temperature Geothermal Source
3.1 Introduction
3.2 Description of Layout
3.3 Materials and Methods
3.3.1 Thermodynamic Analysis
3.3.2 Thermoeconomic Analysis
3.3.3 Reliability Modeling
3.3.4 Main Performance Metrics
3.4 Results and Discussion
3.4.1 Main Results
3.4.2 Parametric Study
3.5 Conclusion
References
4 Thermodynamic, Economic and Environmental Study of a Combined Power Generation Cycle Using Biogas Fuel as a Primary Heat Source
4.1 Introduction
4.2 System Description
4.3 Methodology
4.3.1 Thermodynamic Presumptions
4.3.2 Mathematical Simulation of GT Sub-System
4.3.3 Energy and Exergy Assessment
4.3.4 Exergoeconomic Evaluation
4.3.5 Exergoenvironmental Evaluation
4.3.6 Performance Evaluation
4.4 Results and Arguments
4.4.1 Energy and Exergy Outcomes
4.4.2 Parametric Study
4.5 Conclusions
References
5 A Biomass Assisted Solar-Based Multi-generation Plant with Hydrogen and Freshwater Production: Sustainability, Advanced Exergy and Advanced Exergo-Economic Assessments
5.1 Introduction
5.2 Description of the System
5.3 Process Assessment and Performance of Criteria
5.3.1 Sustainability Index Analysis
5.3.2 Advanced Exergy Method
5.3.3 Advanced Exergo-Economic Method
5.3.4 Verification of the Developed Model
5.4 Results and Discussion
5.5 Conclusions
References
6 Principle of Life Cycle Assessment and Cumulative Exergy Demand for Biodiesel Production: Farm-To-Combustion Approach
6.1 Introduction
6.2 Farm-To-Combustion
6.2.1 Case Study, Data Collection and Oilseeds Production
6.2.2 Oil Extraction Process
6.2.3 Biodiesel Production and Glycerol Additive
6.2.4 Combustion Sector
6.3 LCA Method
6.3.1 Goal and Scope Determination
6.3.2 LCI
6.3.3 LCIA
6.3.4 Life Cycle Interpretation
6.4 CExD
6.5 Interpretation of Results
6.5.1 Exhaust Emissions Analysis
6.5.2 Exergoenvironmental Damages Assessment for Farm to Biodiesel Production
6.5.3 Exergoenvironmental Damages of Power Generation
6.6 Conclusion
References
7 Multi-generation System Optimization Compromising Water-Energy-Environment Nexus
7.1 Introduction
7.2 Methodology
7.3 Modeling
7.4 Optimization
7.5 Results and Discussion
7.5.1 Optimization
7.6 Conclusion
References
Part II Procedures for Storage and Carbon Capture in Energy System Set-Ups
8 Primary Fuel Savings and CO2 Emission Reduction in the Municipal Waste via Anaerobic Digestion
8.1 Introduction
8.2 Documents and Assumptions
8.3 Methodology
8.3.1 Anaerobic Dry Digestion
8.3.2 Selected Power Plants
8.3.3 Landfill Technology
8.3.4 Waste Incinerator
8.4 Results and Discussions
8.4.1 Energy Saving and Emission Reduction
8.4.2 Energy Savings Cost and Payback Time
8.5 Conclusions
References
9 Carbon Capture and Utilization as an Alternative for Renewable Energy Storage
9.1 Importance of CO2 Capture
9.2 Strategies for Reducing Carbon Emissions
9.3 CO2 Capture Systems
9.3.1 Capture from Industrial Process Streams
9.3.2 Post-combustion Capture
9.3.3 Oxy-Fuel Combustion Capture
9.3.4 Pre-combustion Capture
9.4 Carbon Dioxide Utilization
9.4.1 Mineral Carbonation: Technology, Impacts and Costs
9.4.2 Industrial Uses
9.5 CO2 Conversion
9.5.1 Modern Strategies for CO2 Conversion
9.5.2 Electrochemical Conversion
9.5.3 Solar Thermochemical Conversion
9.5.4 Biochemical Conversion
9.5.5 Catalytic Conversion
9.6 Adsorbent Materials for CO2 Capture
9.6.1 Carbon-Based Adsorbents
9.6.2 Zeolites
9.6.3 Advanced Adsorbents
9.6.4 Hydrotalcite-Like Compounds
9.6.5 Molecular Sieves
9.6.6 Metal Organic Framework
9.7 Experimental Investigation of Activated Carbon Production
9.7.1 Experimental Process
9.7.2 Experimental Design
9.7.3 Model
9.8 Cost Analysis of CO2 Capture Process
References
10 A Critical Survey of Bioenergy with Carbon Capture and Storage (BECCS)
10.1 Introduction
10.2 BECCS Overview
10.2.1 What is BECCS?
10.2.2 The Role of BECCS in Climate Change
10.2.3 The Potentials of BECCS
10.3 BECCS Plants: Past, Present, and Future
10.4 BECCS Challenges
10.4.1 Technical Challenges
10.4.2 Social and Political Challenges
10.5 BECCS and the Food-Water-Energy-Climate Nexus
10.5.1 Food Security
10.5.2 Water Issues
10.5.3 Energy
10.5.4 Climate Change
10.6 Conclusion and Outlooks
References
11 Working, Modeling and Applications of Molten Salt TES Systems
11.1 Introduction
11.2 Integration Requirements of TES Systems for an Application
11.3 Economic Requirements of TES Systems
11.4 Economic Requirements of TES Systems
11.4.1 General Classification of TES Systems
11.5 Working Principal of Molten Salt with TES
11.5.1 Two-Tank Type Configuration
11.5.2 Single Thermocline TES Configuration
11.6 Potential and Applications of Molten Salt Thermal Energy Storage
11.6.1 Molten Salt Thermal Energy Storage in CSP System—Transition from Coal to Renewables Energy Resources
11.6.2 Molten Salt Storage for Residential Heating Applications
11.6.3 Molten Salt Storage for Industrial Processes
11.7 Numerical Modeling and Simulation Techniques
11.7.1 Mathematical Models
11.7.2 Single Phase Models
11.7.3 Performance Parameters
11.8 Numerical Modeling Using CFD Tools
11.8.1 Setting up the Problem and Models Validation
11.9 Recent Trends and Challenges in TES
11.10 Chapter Summary
References
12 Optimization of Multi-stage Cooling System’s Performance for Hydrogen Fueled Scramjet
12.1 Introduction
12.2 System Expression
12.3 Methodology and Assumptions
12.3.1 Considered Suppositions
12.3.2 The Mathematic Simulation of Scramjet
12.3.3 Cycle Analysis for the Scramjet Engine Modeling
12.3.4 Performance Criteria of Open Cooling Cycle
12.3.5 PEM Electrolyzer Equations
12.3.6 Thermodynamic Assessment
12.3.7 Multi-criteria Optimization
12.4 Result and Arguments
12.4.1 Results of Thermodynamic Simulation
12.4.2 Optimization Results
12.5 Noteworthy Conclusions
References
Part III Energy Procurement in Sensitive Places and Remote Areas
13 Abandoned Wells and Geothermal Energy: A Survey on the Utilization of Geothermal Heat from Abandoned Wells in Energy Systems
13.1 Introduction
13.2 Advantages and Challenges
13.3 Heat Extraction from the Abandoned Wells
13.4 The Utilized Micro Energy Systems in the Abandoned Wells
13.5 A New Approach
13.6 Conclusion
References
14 Introducing a New System for Energy Recovery of High and Mid-Temperature Renewable Energy Sources: Free Piston Stirling Engine Combined with a Permanent Magnet Linear Synchronous Machine
14.1 Introduction
14.2 Thermodynamic Modeling of the Free Piston Stirling Engine
14.2.1 Dynamic Analysis
14.2.2 Thermic Analysis
14.2.3 Thermodynamic Analysis
14.3 Electrodynamic Modeling of the Permanent Magnet Linear Synchronous Machine
14.3.1 Electro-Dynamic Analysis
14.3.2 Control System
14.4 FPSE-PMLSM Combined System
14.4.1 Thermo-Electro-Dynamic Analysis
14.4.2 Control System
14.4.3 Optimization
14.5 Applications (in a Tri-Generation IRSOFC Based System)
References
15 Detailed 3E Exploration of a Sugar Industry Using Its Experimental Data
15.1 Introduction
15.2 System Description
15.3 System Modeling and Simulation
15.3.1 Simulation of the Combustion Process
15.3.2 Definition Parameters in Exergy Balance
15.3.3 Exergo-Economic Analysis of the System
15.4 Results and Discussion
15.4.1 Parametric Study
15.5 Conclusions
Appendix
References
16 Energy-Efficient Humidity Pump System for Poultry Houses
16.1 Introduction
16.2 Proposed Humidity Pump Systems
16.2.1 Standalone Desiccant Air-Conditioning (DAC) System
16.2.2 M-Cycle Assisted DAC System
16.3 Materials and Methods
16.4 Results and Discussion
16.5 Conclusion
References
Part IV Deterministic and Risk-Aware Short-Term Scheduling of Smart Grids
17 Emerging Business Models for IoT-Based Smart Distribution Systems
17.1 Introduction
17.2 Definition of Business Models
17.3 The Components of the Business Model
17.3.1 Customer Section
17.3.2 Proposed Value
17.3.3 Channels
17.3.4 Customer Relationship
17.3.5 Revenue Stream
17.3.6 Key Resources
17.3.7 Key Activities
17.3.8 Key Contributions
17.3.9 Cost Structure
17.4 A Variety of Business Models
17.4.1 Segregated Business Model
17.4.2 Follow-Up Business Model
17.4.3 Free Business Model
17.4.4 Open Business Model
17.5 IoT Ecosystems
17.5.1 The Concept of the Internet of Things and Its Application
17.5.2 Different Types of IoT
17.5.3 IoT Architectures
17.5.4 Operating Systems on IoT
17.5.5 Data Storage
17.5.6 IoT Platform
17.5.7 IoT Data Processing
17.5.8 Internet Network
17.5.9 IoT Security
17.5.10 IoT Technologies
17.5.11 Suggested IoT Ecosystems
17.6 IoT-Based Smart Distribution Grid
17.6.1 Introducing Smart Grid
17.6.2 Smart Grid Architecture
17.6.3 IoT-Based Smart Distribution Grid
17.6.4 IoT-Based Smart Grid Architectures
17.6.5 IoT-Based Smart Grid Communication Infrastructure
17.6.6 IoT Applications in Power System Distribution
17.7 New Businesses in IoT-Based Distribution Networks
17.7.1 The Conceptual Model of the Smart Grid and Its Components
17.7.2 Identifying Businesses Related to IoT-Based Smart Distribution Network
17.7.3 Business Model Canvases on IoT-Based Smart Distribution Network
17.7.4 IoT-Based Smart Distribution Network Problems and Challenges
17.8 Conclusions
References
18 Modeling the Energy Storage Systems in the Power System Studies
18.1 Introduction
18.2 Introduction of Energy Storage Systems
18.2.1 Technical and Economic Characteristics
18.2.2 Classifications
18.2.3 Applications in Power Systems
18.3 Modeling the ESS’s Specifications
18.3.1 State of Charge
18.3.2 Depth of Discharge
18.3.3 Efficiency
18.3.4 Life Time
18.4 Modeling the ESS in the Power System Studies
18.4.1 ESSs Expansion Planning from the Power System Planner’s Point of View
18.4.2 ESSs Expansion Planning from the Investor's Point of View
18.4.3 ESSs Operation Planning
18.5 Conclusion
References