The World's #1 Guide to Power Supply Design Now Updated!Recognized worldwide as the definitive guide to power supply design for over 25 years, Switching Power Supply Design has been updated to cover the latest innovations in technology, materials, and components. This Third Edition presents the basic principles of the most commonly used topologies, providing you with the essential information required to design cutting-edge power supplies. Using a tutorial, how-and-why approach, this expert resource is filled with design examples, equations, and charts. The Third Edition of Switching Power Supply Design features:Designs for many of the most useful switching power supply topologiesThe core principles required to solve day-to-day design problemsA strong focus on the essential basics of transformer and magnetics design New to this edition: a full chapter on choke design and optimum drive conditions for modern fast IGBTsGet Everything You Need to Design a Complete Switching Power Supply:Fundamental Switching Regulators * Push-Pull and Forward Converter Topologies * Half- and Full-Bridge Converter Topologies * Flyback Converter Topologies * Current-Mode and Current-Fed Topologies * Miscellaneous Topologies * Transformer and Magnetics Design * High-Frequency Choke Design * Optimum Drive Conditions for Bipolar Power Transistors, MOSFETs, Power Transistors, and IGBTs * Drive Circuits for Magnetic Amplifiers * Postregulators * Turn-on, Turn-off Switching Losses and Low Loss Snubbers * Feedback-Loop Stabilization * Resonant Converter Waveforms * Power Factor and Power Factor Correction * High-Frequency Power Sources for Fluorescent Lamps, and Low-Input-Voltage Regulators for Laptop Computers and Portable Equipment
Author(s): Abraham Pressman, Keith Billings, Taylor Morey
Edition: 3
Publisher: McGraw-Hill Professional
Year: 2009
Language: English
Pages: 880
Tags: Приборостроение;Силовая электроника;
Contents......Page 8
Acknowledgments......Page 34
Preface......Page 36
Part I: Topologies......Page 40
1.1 Introduction to Linear Regulators and Switching Regulators of the Buck Boost and Inverting Types......Page 42
1.2 Linear Regulator—the Dissipative Regulator......Page 43
1.3 Switching Regulator Topologies......Page 49
1.4 The Boost Switching Regulator Topology......Page 70
1.5 The Polarity Inverting Boost Regulator......Page 79
References......Page 82
2.2 The Push-Pull Topology......Page 84
2.3 Forward Converter Topology......Page 114
2.4 Double-Ended Forward Converter Topology......Page 133
2.5 Interleaved Forward Converter Topology......Page 137
Reference......Page 140
3.2 Half-Bridge Converter Topology......Page 142
3.3 Full-Bridge Converter Topology......Page 150
4 Flyback Converter Topologies......Page 156
4.1 Introduction......Page 159
4.3 Operating Modes......Page 160
4.4 Discontinuous-Mode Operation......Page 162
4.5 Design Relations and Sequential Design Steps......Page 169
4.6 Design Example for a Discontinuous-Mode Flyback Converter......Page 171
4.7 Universal Input Flybacks for 120-V AC Through 220-V AC Operation......Page 186
4.8 Design Relations—Continuous-Mode Flybacks......Page 188
4.9 Interleaved Flybacks......Page 194
4.10 Double-Ended (Two Transistor) Discontinuous-Mode Flyback......Page 196
References......Page 199
5.1 Introduction......Page 200
5.2 Current-Mode Control......Page 201
5.3 Current-Mode vs. Voltage-Mode Control Circuits......Page 204
5.4 Detailed Explanation of Current-Mode Advantages......Page 210
5.5 Current-Mode Deficiencies and Limitations......Page 215
5.6 Comparing the Properties of Voltage-Fed and Current-Fed Topologies......Page 222
References......Page 266
6.1 SCR Resonant Topologies—Introduction......Page 268
6.2 SCR and ASCR Basics......Page 270
6.3 SCR Turn "Off" by Resonant Sinusoidal Anode Current—Single-Ended Resonant Inverter Topology......Page 274
6.4 SCR Resonant Bridge Topologies—Introduction......Page 279
6.5 Cuk Converter Topology—Introduction......Page 293
6.6 Low Output Power "Housekeeping" or "Auxiliary" Topologies—Introduction......Page 299
References......Page 319
Part II: Magnetics and Circuit Design......Page 322
7.1 Introduction......Page 324
7.2 Transformer Core Materials and Geometries and Peak Flux Density Selection......Page 325
7.3 Maximum Core Output Power, Peak Flux Density, Core and Bobbin Areas, and Coil Currency Density......Page 334
7.4 Transformer Temperature Rise Calculations......Page 354
7.5 Transformer Copper Losses......Page 359
7.6 Introduction: Inductor and Magnetics Design Using the Area Product Method......Page 377
7.7 Magnetics: Introduction to Chokes—Inductors with Large DC Bias Current......Page 397
7.8 Magnetics Design: Materials for Chokes—Introduction......Page 406
7.9 Magnetics: Choke Design Examples......Page 414
7.10 Magnetics: Choke Designs Using Powder Core Materials—Introduction......Page 426
7.11 Choke Design Example: Copper Loss Limited Using Kool Mμ Powder Toroid......Page 434
7.12 Choke Design Examples Using Various Powder E Cores......Page 442
7.13 Swinging Choke Design Example: Copper Loss Limited Using Kool Mμ Powder E Core......Page 456
References......Page 460
8.1 Introduction......Page 462
8.2 The Key Objectives of Good Base Drive Circuits for Bipolar Transistors......Page 463
8.3 Transformer Coupled Baker Clamp Circuits......Page 469
References......Page 494
9.1 MOSFET Introduction......Page 496
9.2 MOSFET Basics......Page 498
9.3 Introduction to Insulated Gate Bipolar Transistors (IGBTs)......Page 526
References......Page 548
10.1 Introduction......Page 550
10.3 Magnetic Amplifiers—Introduction......Page 552
10.4 Magnetic Amplifier Pulse-Width Modulator and Error Amplifier......Page 579
References......Page 583
11.1 Introduction......Page 584
11.2 Transistor Turn "Off" Losses Without a Snubber......Page 586
11.3 RCD Turn "Off" Snubber Operation......Page 587
11.4 Selection of Capacitor Size in RCD Snubber......Page 589
11.5 Design Example—RCD Snubber......Page 590
11.6 Non-Dissipative Snubbers......Page 592
11.7 Load-Line Shaping (The Snubber's Ability to Reduce Spike Voltages so as to Avoid Secondary Breakdown)......Page 594
11.8 Transformer Lossless Snubber Circuit......Page 597
References......Page 598
12.1 Introduction......Page 600
12.2 Mechanism of Loop Oscillation......Page 602
12.3 Shaping Error-Amplifier Gain Versus Frequency Characteristic......Page 611
12.4 Error-Amplifier Transfer Function, Poles, and Zeros......Page 614
12.5 Rules for Gain Slope Changes Due to Zeros and Poles......Page 615
12.6 Derivation of Transfer Function of an Error Amplifier with Single Zero and Single Pole from Its Schematic......Page 617
12.7 Calculation of Type 2 Error-Amplifier Phase Shift from Its Zero and Pole Locations......Page 618
12.8 Phase Shift Through LC Filter with Significant ESR......Page 619
12.9 Design Example—Stabilizing a Forward Converter Feedback Loop with a Type 2 Error Amplifier......Page 621
12.10 Type 3 Error Amplifier—Application and Transfer Function......Page 624
12.11 Phase Lag Through a Type 3 Error Amplifier as Function of Zero and Pole Locations......Page 626
12.12 Type 3 Error Amplifier Schematic, Transfer Function, and Zero and Pole Locations......Page 627
12.13 Design Example—Stabilizing a Forward Converter Feedback Loop with a Type 3 Error Amplifier......Page 629
12.14 Component Selection to Yield Desired Type 3 Error-Amplifier Gain Curve......Page 631
12.15 Conditional Stability in Feedback Loops......Page 632
12.16 Stabilizing a Discontinuous-Mode Flyback Converter......Page 634
12.17 Error-Amplifier Transfer Function for Discontinuous-Mode Flyback......Page 638
12.18 Design Example—Stabilizing a Discontinuous-Mode Flyback Converter......Page 639
12.19 Transconductance Error Amplifiers......Page 641
References......Page 644
13.1 Introduction......Page 646
13.2 Resonant Converters......Page 647
13.3 The Resonant Forward Converter......Page 648
13.4 Resonant Converter Operating Modes......Page 653
13.5 Resonant Half Bridge in Continuous-Conduction Mode......Page 655
13.6 Resonant Power Supplies—Conclusion......Page 666
References......Page 667
Part III: Waveforms......Page 668
14.1 Introduction......Page 670
14.2 Forward Converter Waveshapes......Page 671
14.3 Push-Pull Topology Waveshapes—Introduction......Page 679
14.4 Flyback Topology Waveshapes......Page 699
References......Page 705
Part IV: More Recent Applications for Switching Power Supply Techniques......Page 706
15.1 Power Factor—What Is It and Why Must It Be Corrected?......Page 708
15.2 Power Factor Correction in Switching Power Supplies......Page 710
15.3 Power Factor Correction—Basic Circuit Details......Page 712
15.4 Integrated-Circuit Chips for Power Factor Correction......Page 720
15.5 The Motorola MC 34261 Power Factor Correction Chip......Page 730
References......Page 736
16.1 Introduction: Magnetic Ballasts......Page 738
16.2 Fluorescent Lamp—Physics and Types......Page 742
16.3 Electric Arc Characteristics......Page 745
16.4 Electronic Ballast Circuits......Page 754
16.5 DC/AC Inverter—General Characteristics......Page 755
16.6 DC/AC Inverter Topologies......Page 756
16.7 Voltage-Fed Push-Pull Topology......Page 776
16.8 Current-Fed Parallel Resonant Half Bridge Topology......Page 779
16.9 Voltage-Fed Series Resonant Half Bridge Topology......Page 781
References......Page 784
17.1 Introduction......Page 786
17.2 Low-Input-Voltage IC Regulator Suppliers......Page 787
17.3 Linear Technology Corporation Boost and Buck Regulators......Page 788
17.5 Distributed Power Systems with IC Building Blocks......Page 826
References......Page 831
Appendix......Page 832
Bibliography......Page 836
A......Page 846
B......Page 847
C......Page 849
D......Page 854
E......Page 855
F......Page 857
G......Page 859
H......Page 860
I......Page 861
L......Page 862
M......Page 864
N......Page 866
O......Page 867
P......Page 868
R......Page 872
S......Page 873
T......Page 876
V......Page 878
W......Page 879
Z......Page 880