Improve the energy efficiency of process industry practices Sustainability in the Process Industry explains process integration and optimization and discusses applications for improving the energy and water efficiency of industrial as well as nonindustrial energy users. Approaches for adapting these methodologies to include the integration of waste and renewable energy sources are covered. This authoritative text contains eight industrial-based case studies and nine testing examples with developed solutions. Details on software tools are also included in this practical guide. Optimization goals and application areas within sustainable industrial process design and integration Formulating sustainable tasks as optimization problems Improving energy efficiency through process integration Heat exchange and heat recovery Water/mass integration Minimizing water use and efficient generation New, relevant process integration research results Process optimization frameworks, including mathematical programming and P-graph and S-graph frameworks Applications of process integration, modeling, and optimization software tools
Author(s): Jiri Klemes, Ferenc Friedler, Igor Bulatov, Petar Varbanov
Edition: 1
Publisher: McGraw-Hill Professional
Year: 2010
Language: English
Pages: 385
Contents......Page 6
Preface......Page 16
Acknowledgments......Page 22
1.1 Introduction......Page 24
1.2 Energy Efficiency......Page 26
1.3 Screening and Scoping: Auditing, Benchmarking, and Good Housekeeping......Page 28
1.5 Integrated Approach: Process Integration......Page 30
1.6 Optimal Process Synthesis and Combinatorial Graphs......Page 31
1.7 How to Apply the Process Integration and Optimization Technology......Page 32
2.1 Introduction: The Need for Process Integration......Page 34
2.3 History and Development of Process Integration......Page 35
2.4 Pinch Technology and Targeting Heat Recovery: The Thermodynamic Roots......Page 37
2.5 Supertargeting: Full-Fledged HEN Targeting......Page 38
2.6 Modifying the Pinch Idea for HEN Retrofit......Page 39
2.7 Mass Exchange and Water Networks......Page 40
2.8 Benefits of Process Integration......Page 41
2.10 Examples of Applied Process Integration......Page 43
2.11 Summary......Page 45
3.1 Introduction......Page 46
3.2 Model Building and Optimization: General Framework and Workflow......Page 47
3.3.2 Mathematical Formulation of Optimization Problems......Page 48
3.4 Main Classes of Optimization Problems......Page 49
3.5.2 Conditions for Global Optimality......Page 51
3.7 Deterministic Algorithms for Solving Continuous Nonlinear Optimization Problems......Page 52
3.7.1 Search Algorithms for Nonlinear Unconstrained Problems......Page 53
3.8 Deterministic Methods for Solving Discrete Problems......Page 54
3.9 Stochastic Search Methods for Solving Optimization Problems......Page 55
3.10 Creating Models......Page 56
3.10.1 Conceptual Modeling......Page 57
3.10.2 Mathematical Modeling of Processes: Constructing the Equations......Page 58
3.10.3 Choosing an Objective Function......Page 60
3.10.4 Handling Process Complexity......Page 61
3.10.5 Applying Process Insight......Page 63
3.10.6 Handling Model Nonlinearity......Page 64
3.10.7 Evaluating Model Adequacy and Precision......Page 66
4.1 Introduction to Heat Exchange and Heat Recovery......Page 68
4.1.1 Heat Exchange Matches......Page 69
4.2.2 Hierarchy of Process Design......Page 70
4.2.4 Heat Recovery Problem Identification......Page 71
4.3 Basic Pinch Technology......Page 73
4.3.1 Setting Energy Targets......Page 74
4.3.2 The Heat Recovery Pinch......Page 77
4.3.3 Numerical Targeting: The Problem Table Algorithm......Page 79
4.3.4 Threshold Problems......Page 83
4.3.5 Multiple Utilities Targeting......Page 84
4.4.1 Heat Transfer Area, Capital Cost, and Total Cost Targeting......Page 92
4.4.2 Heat Integration of Energy-Intensive Processes......Page 94
4.4.3 Process Modification......Page 103
4.5.1 The Pinch Design Method......Page 104
4.5.2 Superstructure Approach......Page 116
4.5.3 A Hybrid Approach......Page 118
4.6 Total Site Energy Integration......Page 119
4.6.2 Total Site Profiles......Page 120
4.6.3 Heat Recovery via the Steam System......Page 122
4.6.4 Power Cogeneration......Page 124
4.6.5 Advanced Total Site Optimization and Analysis......Page 125
5.1 Water Integration......Page 128
5.2.1 Legislation......Page 129
5.2.2 Best Available Techniques......Page 130
5.2.3 Water Footprint......Page 131
5.2.4 Minimizing Water Usage and Wastewater......Page 134
5.3 Introduction to Water Pinch Analysis......Page 136
5.4 Flow-Rate Targeting with the Material Recovery Pinch Diagram......Page 139
5.5 MRPD Applied to Fruit Juice Case Study......Page 140
5.6.1 Introduction to Mathematical Optimization......Page 141
5.6.2 Illustrative Example: A Brewery Plant......Page 143
5.7 Summary......Page 145
6.1 Design and Management of Hydrogen Networks......Page 146
6.2 Oxygen Pinch Analysis......Page 148
6.3.1 Simultaneous Minimization of Energy and Water Use......Page 149
6.3.2 Oxygen-Water Pinch Analysis......Page 151
6.3.3 Emergy-Pinch Analysis......Page 153
6.4.1 Budget-Income-Time Pinch Analysis......Page 154
6.4.2 Materials Reuse-Recycle and Property Pinch Analysis......Page 156
6.4.3 Pinch Analysis of Supply Chains......Page 159
6.4.4 Using the Pinch to Target CO[sub(2)] Emissions......Page 161
6.4.5 Regional Resource Management......Page 162
6.5.1 Decarbonization......Page 165
6.5.2 Low-Temperature Energy......Page 166
6.6.1 Integration......Page 167
6.7 Pressure Drop and Heat Transfer Enhancement in Process Integration......Page 169
6.8 Locally Integrated Energy Sectors and Extended Total Sites......Page 171
6.9 Summary......Page 172
7.1 Classic Approach: Mathematical Programming......Page 174
7.2 Structural Process Optimization: P-Graphs......Page 176
7.2.1 Process Representation via P-Graphs......Page 177
7.2.2 The P-Graph’s Significance for Structural Optimization......Page 178
7.2.3 The P-Graph’s Mathematical Engine: MSG, SSG, and ABB......Page 180
7.3.1 Scheduling Frameworks: Suitability and Limitations......Page 182
7.3.2 S-Graph Framework for Scheduling......Page 184
8.1 The Role of Optimization in Process Synthesis......Page 188
8.2 Optimization Tools for Efficient Implementation of PI......Page 189
8.3.1 Reaction Network Synthesis......Page 190
8.3.2 Optimal Synthesis of Heterogeneous Flowsheets......Page 192
8.3.3 Synthesis of Green Biorefineries......Page 194
8.3.4 Azeotropic Distillation Systems......Page 196
8.4.1 Simple Heat Integration......Page 199
8.4.2 Optimal Retrofit Design......Page 200
8.5.1 Maximizing Throughput and Revenue......Page 202
8.5.2 Heat-Integrated Production Schedules......Page 203
8.6 Minimizing Emissions and Effluents......Page 206
8.7 Availability and Reliability......Page 209
8.8 Summary......Page 213
9.2.1 PNS Solutions......Page 214
9.2.2 S-Graph Studio......Page 216
9.3.3 STAR......Page 218
9.3.5 WORK......Page 221
9.3.6 HEXTRAN......Page 222
9.3.8 Spreadsheet-Based Tools......Page 223
9.4 Mass Integration Software: WATER......Page 224
9.5.1 ASPEN......Page 225
9.5.2 HYSYS and UniSim Design......Page 226
9.5.3 gPROMS......Page 227
9.5.4 CHEMCAD......Page 228
9.6.1 GAMS......Page 229
9.6.2 MIPSYN......Page 230
9.6.3 LINDO......Page 231
9.6.5 ILOG ODM......Page 232
9.7.1 MATLAB......Page 233
9.8.1 Modelica......Page 234
9.8.2 Emerging Trends......Page 235
9.8.3 Balancing and Flowsheeting Simulation for Energy-Saving Analysis......Page 238
9.8.4 Integrating Renewable Energy into Other Energy Systems......Page 239
10.1.1 Heat Pinch Technology: First Problem......Page 242
10.1.2 Heat Pinch Technology: Second Problem......Page 247
10.2.1 Total Sites: First Problem......Page 249
10.2.2 Total Sites: Second Problem......Page 254
10.3 Integrated Placement of Processing Units and Data Extraction......Page 257
10.4.1 Utility Placement: First Problem......Page 261
10.4.2 Utility Placement: Second Problem......Page 266
10.5.1 Water Pinch Technology: First Problem......Page 270
10.5.2 Water Pinch Technology: Second Problem......Page 272
11.1 Energy Recovery from an FCC Unit......Page 276
11.2 De-bottlenecking a Heat-Integrated Crude-Oil Distillation System......Page 279
11.3 Minimizing Water and Wastewater in a Citrus Juice Plant......Page 285
11.4 Efficient Energy Use in Other Food and Drink Industries......Page 291
11.5 Synthesis of Industrial Utility Systems......Page 294
11.6 Heat and Power Integration in Buildings and Building Complexes......Page 298
11.7 Optimal Design of a Supply Chain......Page 300
11.8 Scheduling a Large-Scale Paint Production System......Page 302
12 Typical Pitfalls and How to Avoid Them......Page 304
12.1 Data Extraction......Page 306
12.1.1 When Is a Stream a Stream?......Page 307
12.1.2 How Precise Must the Data Be at Each Step?......Page 308
12.1.3 How Can Considerable Changes in Specific Heat Capacities Be Handled?......Page 309
12.1.4 What Rules and Guidelines Must Be Followed to Extract Data Properly?......Page 310
12.1.5 How Can the Heat Loads, Heat Capacities, and Temperatures of an Extracted Stream Be Calculated?......Page 312
12.1.7 How Can Capital Costs and Operating Costs Be Estimated?......Page 313
12.3 Steady-State and Dynamic Performance......Page 315
12.5 Making It Happen......Page 316
13.1.1 Conferences......Page 318
13.1.3 Service Providers......Page 320
13.2.3 Service Providers......Page 324
13.2.4 Projects......Page 326
13.3.2 Journals......Page 327
13.3.3 Service Providers......Page 328
13.4.1 Conferences......Page 329
13.4.3 Service Providers......Page 330
13.4.4 Projects......Page 331
13.5.1 Conferences......Page 332
13.5.3 Service Providers......Page 333
13.5.4 Projects......Page 334
14.1.1 Books and Key Articles......Page 336
14.1.2 Lecture Notes and Online Teaching Resources......Page 338
14.2.2 Maintenance Scheduling, Maintainability, and Reliability......Page 339
14.2.4 Integration of Renewables and Waste......Page 340
14.2.6 Energy Planning That Accounts for Carbon Footprint......Page 342
14.3 Conclusions......Page 343
Bibliography......Page 344
B......Page 368
C......Page 369
D......Page 371
E......Page 372
H......Page 373
I......Page 375
M......Page 376
O......Page 378
P......Page 379
S......Page 381
T......Page 383
W......Page 384