This volume consists of the papers presented by the invited lecturers at the 16th British Combinatorial Conference. This biennial meeting is one of the most important for combinatorialists, attracting leading figures in the field. This overview of up-to-date research will be a valuable resource for researchers and graduate students.
Author(s): R. A. Bailey
Series: London Mathematical Society Lecture Note Series
Publisher: CUP
Year: 1997
Language: English
Pages: 353
Cover......Page 1
Title......Page 4
Copyright......Page 5
Contents......Page 6
Preface......Page 10
2 Definition of M_{13}......Page 16
3 The first few moves......Page 17
4 The hexads.......Page 19
5 The doublings of M_{13}......Page 20
6 The inner product......Page 23
7 The proofs......Page 24
8 Further comments......Page 25
References.......Page 26
1 Introduction......Page 28
2 Basic properties......Page 30
3 General bounds......Page 32
4 Special graphs......Page 35
5 Asymptotic results......Page 38
6 Trees......Page 41
7 Computational complexity......Page 46
8 Related topics......Page 49
9 Open problems......Page 53
References......Page 55
1 Introduction......Page 64
2 Formulating the problem for BDX.......Page 65
3 Towards a search.......Page 71
References.......Page 78
2 Partitions and quotients of permutation groups and graphs......Page 80
3 Primitive graph quotients......Page 82
4 Normal quotients of locally primitive and locally quasiprimitive graphs.......Page 85
5 Finite quasiprimitive permutation groups......Page 87
6 Finite quasiprimitive 2-arc transitive graphs......Page 91
7 Full automorphism groups of quasiprimitive graphs......Page 94
References.......Page 97
1 Introduction......Page 102
2 Graphs of bounded tree width......Page 120
3 Untangling tangles......Page 134
4 Excluding walls......Page 143
5 Graph minors revisited......Page 145
6 Packing and covering.......Page 151
7 Building a wall.......Page 160
References.......Page 173
1 Introduction......Page 178
2 Overview of ?G)......Page 179
3 Overview of A (G)......Page 181
4 Some basic facts on ?G).......Page 184
5 u(G) and A(G) for complete graphs.......Page 190
6 Clique sums.......Page 191
8 u(G) and A(G) for complete bipartite graphs.......Page 193
10 Van der Hoist's lemma......Page 194
12 Characterizing p(G) < 3......Page 196
13 Characterizing(G) < 3......Page 197
14 A Borsuk theorem for antipodal links......Page 201
15 Characterizing ?G) < 4......Page 202
16 Towards characterizing A(G) < 4......Page 204
17 An extension to oriented matroids......Page 206
18 The related graph invariant ic(G)......Page 207
References......Page 209
1 Introduction......Page 212
2 Weil's theorem and its variants.......Page 214
3 Applications of Weil's theorem in graph theory and combinatorics......Page 216
4 Applications of Weil's theorem in finite geometry......Page 222
5 The generalized Menelaus' theorem and applications: large arcs......Page 230
6 The Redei polynomial and applications: blocking sets and (k, n)- arcs......Page 235
References......Page 243
1 Introduction......Page 252
3 Classical representation theorems......Page 254
4 Dilworth's theorem for interval orders......Page 258
5 Linear extensions and dimension......Page 259
6 Linear extensions of interval orders......Page 260
7 Dimension of interval orders.......Page 261
8 Critical pairs and alternating cycles......Page 263
9 Interval orders and shift graphs......Page 264
10 Interval orders and overlap graphs......Page 267
11 Semi-orders and balancing pairs......Page 270
12 Interval orders and extremal problems......Page 272
13 Interval orders and hamiltonian paths......Page 274
14 On-line and un-cooperative coloring......Page 276
15 Fractional dimension and ramsey theory for probability spaces......Page 279
16 Higher-dimensional analogues for graphs......Page 281
17 Higher dimensional analogues for orders......Page 284
18 Intervals, angles and spheres......Page 286
19 Tolerances, thresholds and gaps......Page 287
References......Page 292
1 Introduction......Page 302
2 Counting to within a ratio......Page 304
3 Randomised approximation schemes......Page 306
4 Rapidly mixing Markov chains......Page 309
5 Computing in a convex body......Page 312
6 Partial orders......Page 315
7 Graph problems.......Page 317
8 Contingency tables......Page 323
9 Matroid problems......Page 324
10 Zonotopes......Page 328
References......Page 332
Author Index......Page 340
Subject Index......Page 346