This carefully selected balance of tutorial-like review chapters and advanced research covers hot topics in the field of biointerfaces, biosensing, nanoparticles at interfaces, and functionalized quantum dots. It also includes chapters arising from non-published work with topics such as surface design and their applications, as well as new developments in analytical tools for materials science and life science.Based on the very close and complementary collaboration of three distinguished leading research groups, this book highlights recent advances in the field ranging from synthesis and fabrication of organic and polymeric materials, surface and interface science to advanced analytical methods. It thus addresses new concepts in micro- and nanofabrication, bio-nanotechnology, biosensors and the necessary compositional and structural analysis. Particular attention is paid throughout to complex hierarchical interface architectures and possible applications of the chemical and physical methodologies discussed, covering bio-diagnostics, novel biosensors and adhesion science.With its unique combination of expertise from chemistry, physics, biology, surface science and engineering, this is a valuable companion for students, practitioners and established experts.
Author(s): Renate Forch, Holger Schonherr, A. Tobias A. Jenkins
Edition: 1
Year: 2009
Language: English
Pages: 532
Tags: Специальные дисциплины;Наноматериалы и нанотехнологии;
Surface Design: Applications in Bioscience and Nanotechnology......Page 5
Foreword......Page 7
Contents......Page 11
List of Contributors......Page 21
1 Tutorial Reviews......Page 27
1.1.1 Introduction......Page 29
1.1.2 Surfaces and Self-Assembled Monolayers......Page 31
1.1.3 Reactions at Surfaces......Page 34
1.1.4.1 Covalent Attachment Reactions......Page 40
1.1.4.2 Noncovalent Attachment Reactions......Page 46
References......Page 51
1.2.2 Surface Plasmons......Page 55
1.2.3 Optical Excitation of Surface Plasmons......Page 58
1.2.4 Implementation of SPR Biosensors......Page 60
1.2.5 Sensitivity of a SPR Biosensor to Biomolecular Binding......Page 65
1.2.6 Evaluation of Binding Affinity Constants......Page 68
1.2.7 Applications of SPR Biosensors......Page 72
References......Page 75
1.3.1 Introduction......Page 81
1.3.2 Chemical Methods of Adhesion Promotion......Page 84
1.3.3 Physicochemical Methods of Surface Modification......Page 88
1.3.3.1 Plasma-Assisted Surface Modification......Page 89
1.3.4 Analytical Tools to Study Adhesion......Page 96
1.3.5 Adhesion Failure – Longevity of Modification......Page 98
References......Page 99
1.4.1.1 Units of Concentration......Page 107
1.4.1.2 Sensitivity......Page 108
1.4.1.4 Limit of Detection (LoD)......Page 109
1.4.2.2 Signal Amplification by Assay Design......Page 110
1.4.3 Strategies for Attaching Functional Biomolecules to Surfaces......Page 111
1.4.3.2 Direct Covalent Coupling of Biomolecules Using EDC–NHS......Page 113
1.4.3.5 Brush Surfaces......Page 115
1.4.4 Methods to Prevent Nonspecific Adsorption......Page 116
1.4.5 Analyte Recognition......Page 117
1.4.6.2 Antibody 'Sandwich’ Assay Sensing Platform for Detection of Group B Streptococcus Bacterium......Page 118
1.4.6.3 Biosensors for Detecting Viruses: Antibody Recognition and the HIV Test......Page 120
1.4.6.5 Nucleic-Acid-Based Sensors......Page 121
1.4.6.6 Electrochemical Measurement of Blood Glucose......Page 123
1.4.7 Summary and Conclusions......Page 124
References......Page 125
2 Functional Thin Film Architecture and Platforms Based on Polymers......Page 129
2.1.1 Introduction......Page 131
2.1.2 Results and Discussion......Page 133
2.1.2.1 Wetting Layer......Page 135
2.1.2.2 Ordering on Planar Substrates......Page 140
2.1.2.3 Ordering on Topographically Patterned Substrates......Page 142
2.1.3 Conclusions......Page 145
2.1.4 Experimental Section......Page 146
References......Page 148
2.2.1 Introduction......Page 151
2.2.2 Synthesis......Page 152
2.2.3 Stimuli-Responsive Brushes......Page 153
2.2.4 Engineering of Surfaces with Stimuli-Responsive Polymer Brushes......Page 154
2.2.5 Polymer Brushes Across the Length Scales: A Tool for Functional Nanomaterials......Page 159
2.2.6 Polymer Brushes and Cell Adhesion......Page 162
References......Page 167
2.3.1 Introduction......Page 171
2.3.2.2 Sample Preparation......Page 173
2.3.2.4 Wet-Chemical Surface Activation – Transformation of Surface Hydroxy Groups into Cyanate Groups (PEEK-OCN)......Page 174
2.3.2.6 Gluing and Adhesion Tests......Page 175
2.3.3.1 Choice of PT-30 CEM as Adhesive for PEEK......Page 176
2.3.3.2 Surface Activation of PEEK for Adhesion Improvements......Page 181
2.3.4 Conclusion......Page 188
References......Page 190
2.4.1 Introduction......Page 191
2.4.2 Results and Discussion......Page 196
2.4.3 Outlook......Page 203
References......Page 204
3 Biointerfaces, Biosensing, and Molecular Interactions......Page 207
3.1.1 Introduction......Page 209
3.1.2 Forensic Analysis and Novel Surface-Based Biosensors......Page 212
3.1.2.1 Principles and Confines of Extraction, Separation and Detection of Analytes and the Role of Surface Chemistry......Page 214
3.1.2.2 New Attempts in Analytical Surface Chemistry......Page 216
3.1.2.3 New Forensic Fields of Application of Novel Surface-Based Biosensors......Page 219
3.1.2.4 Further Perspectives and Applications......Page 224
3.1.3 Summary and Conclusions......Page 227
References......Page 228
3.2.1 Introduction......Page 233
3.2.2 Application of Patterned Functional Surfaces......Page 234
3.2.3 Synthesis of Photosensitive Silane Molecules......Page 240
3.2.5 Patterning Self-Assembled Monolayers by Photolithography......Page 242
3.2.6 Summary and Conclusion......Page 244
References......Page 245
3.3.1 Introduction......Page 247
3.3.2 Tethered Bilayer Lipid Membranes......Page 249
3.3.3 Protein Incorporation......Page 253
3.3.4 Conclusion and Outlook......Page 255
References......Page 256
3.4.1 Introduction......Page 259
3.4.2 Cancer-Cell-Surface Interactions......Page 266
References......Page 273
3.5.1.1 Lipid Vesicles......Page 277
3.5.1.2 Fabrication of Surface-Tethered Lipid Vesicles......Page 278
3.5.1.3 Polymer-, SAM- and Streptavidin-Tethered LUVs......Page 279
3.5.1.4 Fabrication of LBVs......Page 280
3.5.1.5 Composition of Solid-Supported LBVs......Page 281
3.5.2.2 Modeling Passive Diffusion Through Membrane......Page 282
3.5.2.3 The Effect of Cholesterol......Page 284
3.5.2.4 Biophysical and Microscopy Techniques to Study Tethered Lipid Vesicles......Page 285
3.5.2.5 The Application of Surface-Tethered Lipid Vesicles......Page 287
3.5.3 Conclusions......Page 292
References......Page 293
3.6.1 Introduction......Page 297
3.6.2.1 Materials and Substrates......Page 298
3.6.2.2 Plasma Deposition of ppAA Films......Page 299
3.6.2.5 SPFS Measurements......Page 300
3.6.3.1 Film Analysis......Page 301
3.6.3.2 Comparison of PNA and DNA Adsorption on a ppAA Film......Page 304
3.6.3.3 Detection of Different DNA Targets......Page 305
3.6.4 Conclusions......Page 307
References......Page 308
4 Nanoparticles and Nanocontainers......Page 311
4.1.1 Introduction......Page 313
4.1.2.1 Electrophoretic Deposition of Polymer Colloidal Particles......Page 317
4.1.2.2 Deposition of Colloidal Particles on Flat (Nonpatterned) Electrode Surfaces......Page 319
4.1.2.3 Deposition Control of Colloidal Particles on Patterned Surfaces......Page 320
4.1.2.4 Formation of Colloidal Monolayers......Page 325
4.1.2.5 Colloidal Crystals with FCC and BCC Crystal Structure......Page 327
4.1.2.6 Layer-by-Layer Colloidal Deposition: Nonclose-Packed Colloidal Crystals with Hexagonal Symmetry......Page 332
4.1.2.7 Layer-by-Layer Colloidal Deposition: Binary Colloidal Monolayers and Crystals......Page 334
4.1.2.8 Layer-by-Layer Colloidal Deposition: Formation of Colloidal Crystals with Planar Defects......Page 338
4.1.2.9 Layer-by-Layer Colloidal Deposition: Colloidal Crystals with NaCl Structure......Page 340
4.1.3 Conclusions......Page 342
References......Page 344
4.2.1 Introduction......Page 349
4.2.3 The Dielectric Environment......Page 351
4.2.4 Electrochemical Measurements on Quantum Dots......Page 352
4.2.5 Optical Properties of Charged Quantum Dots......Page 356
4.2.6 The Interaction of QDs and Surface Plasmons......Page 360
References......Page 364
4.3.1 Introduction......Page 367
4.3.2 Historical Perspective......Page 368
4.3.3 Semiconductor Nanocrystals – Quantum Dots......Page 369
4.3.4 Surface Functionalization of Quantum Dots......Page 371
4.3.4.1 Passivation with Inorganic Shells......Page 372
4.3.4.2 Encapsulation of Quantum Dots with Silica......Page 373
4.3.4.3 Functionalization of Quantum Dots with Organic Ligands......Page 375
4.3.5 Analysis and Characterization of QD Ligand Shells......Page 378
4.3.6 Conclusion and Outlook......Page 381
References......Page 382
4.4.1 Introduction......Page 389
4.4.2.2 Multilayer Fabrication on Flat Substrates......Page 391
4.4.3.1 Redox Characteristics of PFS Multilayers on Flat Substrates......Page 392
4.4.3.2 Microcapsule Formation and Permeability Threshold......Page 393
4.4.3.3 Chemical Oxidation of (PFS(–)/PFS(+))(n) Microcapsules......Page 395
4.4.3.4 Chemical Reduction of (PFS(–)/PFS(+))(n) Microcapsules......Page 396
4.4.3.5 Chemical Redox-Responsive Behavior of (PSS(–)/PFS(+))(5) Microcapsules......Page 398
4.4.3.6 Chemical Redox-Responsive Behavior of (PFS(–)/PAH(+))(5) Microcapsules......Page 399
4.4.3.7 Redox-Responsive Permeability of Composite-Wall Microcapsules......Page 400
4.4.3.8 Electrochemically Redox-Responsive Microcapsules......Page 404
4.4.4 Conclusions......Page 405
References......Page 407
4.5.1 Introduction......Page 409
4.5.2.1 Fabrication of Nanoporous Oxide Thin-Film Waveguides by Bottom-Up Approaches......Page 410
4.5.2.3 Nanoporous Anodic Aluminum Oxide (Nanoporous AAO)......Page 411
4.5.2.4 Optical Waveguiding and Optical Waveguide Spectroscopy (OWS)......Page 412
4.5.2.5 Effective Medium Theory (EMT)......Page 413
4.5.3 Nanoporous Waveguide Sensing......Page 415
4.5.4.1 Functionalization of Nanoporous AAO with Polypeptide Brushes......Page 419
4.5.4.2 In-Situ Characterization of Layer-by-Layer (LbL) Deposition of Dendrimer Polyelectrolyte......Page 421
4.5.4.3 Simultaneous Waveguide and Electrochemistry Measurements......Page 423
4.5.5 Conclusions......Page 424
References......Page 425
5 Surface and Interface Analysis......Page 429
5.1.1 Single-Molecule Force Spectroscopy Using AFM......Page 431
5.1.2 Stretching of Individual Macromolecules......Page 434
5.1.3 Realization of a Single-Macromolecular Motor......Page 435
5.1.4 Stretching of Individual Polysaccharide Filaments......Page 440
5.1.5 Rupture of Host–Guest Complexes and Supramolecular Polymers......Page 445
References......Page 450
5.2.1 Introduction......Page 455
5.2.2 Results and Discussion......Page 460
5.2.3 Outlook......Page 469
References......Page 470
5.3.1 Introduction......Page 473
5.3.2 Surface Plasmon Modes Propagating on a Thin Metal Film......Page 474
5.3.3 Optical Excitation of LRSPs......Page 478
5.3.4 Implementation of LRSPs in a SPFS-Based Biosensor......Page 480
5.3.5 Comparison of LRSP and SP-Enhanced Fluorescence Spectroscopy......Page 481
5.3.6 LRSP-Enhanced Fluorescence Spectroscopy: Biomolecular Binding Studies......Page 483
5.3.7 Conclusions and Future Outlook......Page 485
References......Page 486
Appendices: Surface Analytical Tools......Page 489
Appendix A Material Structure and Surface Analysis......Page 491
Appendix B Atomic Force Microscopy......Page 493
Appendix C Contact Angle Goniometry......Page 497
Appendix D Ellipsometry......Page 500
Appendix E Fourier Transform Infrared Spectroscopy......Page 502
Appendix F Impedance Spectroscopy......Page 505
Appendix G Scanning Electron Microscopy......Page 509
Appendix H Surface Plasmon Resonance......Page 511
Appendix I Optical Waveguide Spectroscopy (OWS) – µm-Thick Films......Page 514
Appendix J Waveguide Mode Spectroscopy (WaMs) – nm-Thick Films......Page 517
Appendix K X-ray Photoelectron Spectroscopy (XPS)......Page 519
Index......Page 523