Support Vector Machines for Pattern Classification

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Originally formulated for two-class classification problems, support vector machines (SVMs) are now accepted as powerful tools for developing pattern classification and function approximation systems. Recent developments in kernel-based methods include kernel classifiers and regressors and their variants, advancements in generalization theory, and various feature selection and extraction methods.

Providing a unique perspective on the state of the art in SVMs, with a particular focus on classification, this thoroughly updated new edition includes a more rigorous performance comparison of classifiers and regressors. In addition to presenting various useful architectures for multiclass classification and function approximation problems, the book now also investigates evaluation criteria for classifiers and regressors.

Topics and Features:

  • Clarifies the characteristics of two-class SVMs through extensive analysis
  • Discusses kernel methods for improving the generalization ability of conventional neural networks and fuzzy systems
  • Contains ample illustrations, examples and computer experiments to help readers understand the concepts and their usefulness
  • Includes performance evaluation using publicly available two-class data sets, microarray sets, multiclass data sets, and regression data sets (NEW)
  • Examines Mahalanobis kernels, empirical feature space, and the effect of model selection by cross-validation (NEW)
  • Covers sparse SVMs, an approach to learning using privileged information, semi-supervised learning, multiple classifier systems, and multiple kernel learning (NEW)
  • Explores incremental training based batch training and active-set training methods, together with decomposition techniques for linear programming SVMs (NEW)
  • Provides a discussion on variable selection for support vector regressors (NEW)

An essential guide on the use of SVMs in pattern classification, this comprehensive resource will be of interest to researchers and postgraduate students, as well as professional developers.

Dr. Shigeo Abe is a Professor at Kobe University, Graduate School of Engineering. He is the author of the Springer titles Neural Networks and Fuzzy Systems and Pattern Classification: Neuro-fuzzy Methods and Their Comparison.

Author(s): Shigeo Abe (auth.)
Series: Advances in Pattern Recognition
Edition: 2
Publisher: Springer-Verlag London
Year: 2010

Language: English
Pages: 473
Tags: Pattern Recognition; Document Preparation and Text Processing; Artificial Intelligence (incl. Robotics); Control, Robotics, Mechatronics

Front Matter....Pages i-xix
Introduction....Pages 1-19
Two-Class Support Vector Machines....Pages 21-112
Multiclass Support Vector Machines....Pages 113-161
Variants of Support Vector Machines....Pages 163-226
Training Methods....Pages 227-303
Kernel-Based Methods Kernel@Kernel-based method ....Pages 305-329
Feature Selection and Extraction....Pages 331-341
Clustering....Pages 343-352
Maximum-Margin Multilayer Neural Networks....Pages 353-366
Maximum-Margin Fuzzy Classifiers....Pages 367-394
Function Approximation....Pages 395-442
Back Matter....Pages 443-471