Superlattice to Nanoelectronics provides a historical overview of the early work performed by Tsu and Esaki, to orient those who want to enter into this nanoscience. It describes the fundamental concepts and goes on to answer many questions about todays 'Nanoelectronics'. It covers the applications and types of devices which have been produced, many of which are still in use today. This historical perspective is important as a guide to what and how technology and new fundamental ideas are introduced and developed. The author communicates a basic understanding of the physics involved from first principles, whilst adding new depth, using simple mathematics and explanation of the background essentials.
Author(s): Raphael Tsu
Edition: 1
Publisher: Elsevier Science
Year: 2005
Language: English
Pages: 345
Cover......Page 1
Half Title Page......Page 2
Copyright......Page 3
Title Page......Page 4
Copyright......Page 5
Preface......Page 6
Introduction......Page 10
Contents......Page 16
1.1. THE BIRTH OF THE MAN-MADE SUPERLATTICE......Page 21
1.2. A MODEL FOR THE CREATION OF MAN-MADE ENERGY BANDS......Page 24
1.4. MORE RIGOROUS DERIVATION OF THE NEGATIVE DIFFERENTIAL CONDUCTANCE......Page 26
1.5. RESPONSE OF A TIME-DEPENDENT ELECTRIC FIELD......Page 30
1.6. NDC FROM THE HOPPING MODEL AND ELECTRIC FIELD INDUCED LOCALIZATION......Page 35
1.7. EXPERIMENTS......Page 47
1.8. TYPE II SUPERLATTICE......Page 53
1.9. PHYSICAL REALIZATION AND CHARACTERIZATION OF A SUPERLATTICE......Page 64
1.10. SUMMARY......Page 73
REFERENCES......Page 74
2.1. THE BIRTH OF RESONANT TUNNELING......Page 77
2.2. SOME FUNDAMENTALS......Page 81
2.3. CONDUCTANCE FROM THE TSU–ESAKI FORMULA......Page 86
2.4. TUNNELING TIME FROM THE TIME-DEPENDENT SCHRÖDINGER EQUATION......Page 87
2.5. DAMPING IN RESONANT TUNNELING......Page 97
2.6. VERY SHORT ℓ AND w FOR AN AMORPHOUS QUANTUM WELL......Page 117
2.7. SELF-CONSISTENT POTENTIAL CORRECTION OF DBRT......Page 120
2.8. EXPERIMENTAL CONFIRMATION OF RESONANT TUNNELING......Page 123
2.9. INSTABILITY IN RTD......Page 126
2.10. SUMMARY......Page 132
REFERENCES......Page 134
3.1. OPTICAL ABSORPTION IN A SUPERLATTICE......Page 137
3.2. PHOTOCONDUCTIVITY IN A SUPERLATTICE......Page 143
3.3. RAMAN SCATTERING IN A SUPERLATTICE AND QUANTUM WELL......Page 146
3.4. SUMMARY......Page 162
REFERENCES......Page 163
4.1. DIELECTRIC FUNCTION OF A SUPERLATTICE AND A QUANTUM WELL......Page 165
4.2. DOPING A SUPERLATTICE......Page 169
REFERENCES......Page 173
5.1. OPTICAL PROPERTIES OF QUANTUM STEPS......Page 175
5.2. DETERMINATION OF ACTIVATION ENERGY IN QUANTUM WELLS......Page 180
REFERENCES......Page 185
6. Semiconductor Atomic Superlattice (SAS)......Page 187
6.1. SILICON-BASED QUANTUM WELLS......Page 188
6.2. Si–INTERFACE ADSORBED GAS (IAG) SUPERLATTICE......Page 189
6.3. AMORPHOUS SILICON/SILICON OXIDE SUPERLATTICE......Page 191
6.4. SILICON–OXYGEN (Si–O) SUPERLATTICE......Page 193
6.5. ESTIMATE OF THE BAND-EDGE ALIGNMENT USING ATOMIC STATES......Page 198
6.6. ESTIMATE OF THE BAND-EDGE ALIGNMENT WITH HOMO–LUMO......Page 199
6.7. ESTIMATION OF STRAIN FROM A BALL AND STICK MODEL......Page 200
6.8. ELECTROLUMINESCENCE AND PHOTOLUMINESCENCE......Page 214
6.9. TRANSPORT THROUGH A Si–O SUPERLATTICE......Page 218
6.10. COMPARISON OF A Si–O SUPERLATTICE AND A Ge–Si MONOLAYER SUPERLATTICE......Page 221
6.11. SUMMARY......Page 223
REFERENCES......Page 224
7.1. ENERGY STATES OF SILICON QUANTUM DOTS......Page 227
7.2. RESONANT TUNNELING IN SILICON QUANTUM DOTS......Page 233
7.3. SLOW OSCILLATIONS AND HYSTERESIS......Page 240
7.4. AVALANCHE MULTIPLICATION FROM RESONANT TUNNELING......Page 248
7.5. INFLUENCE OF LIGHT AND REPEATABILITY UNDER MULTIPLE SCANS......Page 252
7.6. SUMMARY......Page 254
REFERENCES......Page 256
8.1. CAPACITANCE OF SILICON QUANTUM DOTS......Page 259
8.2. DIELECTRIC CONSTANT OF A SILICON QUANTUM DOT......Page 268
8.3. DOPING A SILICON QUANTUM DOT......Page 277
8.4. SUMMARY......Page 283
REFERENCES......Page 284
9.1. POROUS SILICON – LIGHT EMITTING SILICON......Page 287
9.2. POROUS SILICON – OTHER APPLICATIONS......Page 292
REFERENCES......Page 295
10.1. COLD CATHODE......Page 297
10.2. SATURATION INTENSITY OF PbS QUANTUM DOTS......Page 301
10.3. MULTIPOLE ELECTRODE HETEROJUNCTION HYBRID STRUCTURES......Page 305
10.4. SOME FUNDAMENTAL ISSUES: MAINLY DIFFICULTIES......Page 309
10.5. COMMENTS ON QUANTUM COMPUTING......Page 311
10.6. SUMMARY......Page 312
REFERENCES......Page 313
11.1. LANDAUER CONDUCTANCE FORMULA......Page 315
11.2. ELECTRON QUANTUM WAVEGUIDE (EQW)......Page 316
11.3. WAVE IMPEDANCE OF ELECTRONS......Page 320
11.4. SUMMARY......Page 328
REFERENCES......Page 329
12. Nanoelectronics: Where Are You?......Page 331
REFERENCES......Page 334
Index......Page 335