Superionic Conductor Physics Proceedings of the 1st International Discussion Meeting on Superionic Conductor Physics Kyoto, Japan, 10-14 September 2003

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

The book presents basic studies on ion transport properties of ionic conductive solid. It describes research on theory, modeling, simulation, crystalline structure, nuclear magnetic resonance, electric conduction, optical properties, and thermal measurement in this field. Superionic conductors are highly promising functional materials. As a stepping stone in the development of new superionic conductors that can be utilized as functinal materials efforts to reevaluate solid-interior diffusion and conduction phenomena of ions and molecules in a superionic conductor on the basis of basic physical properties, and to clarify mechanism governing these phenomena from a microscopic standpoint are important. How are diffusing ions associated with material structures within a superionic conductor? What types of interaction are diffusing ions undergoing with the host ions surrounding them? How important is the correlation among diffusing ions in their motion? The carefully presented detail of this book will be of value to research devoted to the understanding and control of functional materials such as superionic conductors.

Author(s): Junichi Kawamura, Shinzo Yoshikado, takashi Sakuma, Yoshitaka Michihiro, Masaru Aniya, Yoshiaki Ito
Year: 2007

Language: English
Commentary: Conference publication
Pages: 225
City: Hackensack, N.J. World Scientific
Tags: Физика;Физика твердого тела;

Contents......Page 14
Preface......Page 12
1. Introduction......Page 18
3.1 Fundamental bonding monovalent cations......Page 19
3.2. -Agl crystal......Page 20
3.3. Li3N crystal......Page 22
References......Page 24
2 DV-Xa Method......Page 26
3. Model Clusters......Page 27
4.1 DOS......Page 28
4.2 BOP......Page 29
Acknowledgements......Page 30
References......Page 31
2 Electronic Structure......Page 32
3.1 Superionic Superlattice......Page 34
3 3 Wandering Ion......Page 35
4. Conclusion......Page 36
References......Page 37
2 Numerical Method......Page 38
3 Results and Discussion......Page 40
References......Page 43
2. Experimental......Page 44
3. Results and Discussion......Page 45
References......Page 47
2. Pinpoint Doping using P”-Al2O3 microelectrode......Page 48
3. Quantitative assessment of dopin [15]......Page 49
4. Electrochemieat design of metal distribution [Is, 201......Page 50
References......Page 51
2 Hubbard-Onsager Theory......Page 52
3.1 Subcritical Methanol......Page 53
3.3 Supercritical Water......Page 55
Acknowledgments......Page 56
References......Page 57
1. Introduction......Page 58
3. Results and Discussion......Page 59
References......Page 61
2. Experimental......Page 63
3.2. XPS analysis......Page 64
3.3. Transmittance analysis......Page 65
References......Page 66
2.1.2 Vapor-solid diffusion......Page 67
2.2.1 Estimation of relative concentration by optical methods......Page 68
2.1.2 Estimation of diffusion coeficient......Page 69
3. Discussion......Page 70
3.1 Hoping model......Page 71
3.2 A possible mechanism......Page 72
References......Page 73
2. The Effective Charges of Superionic Materials......Page 74
3. Pressure Dependence of the Effective Charge......Page 75
References......Page 77
2. Method of Calculations......Page 78
3.2. Electronic Density of States......Page 79
3.4. Population Analysis......Page 81
References......Page 83
1. Bond Valence Concept......Page 84
2. Pathway Modelis in Crystalline Ssfid E Geetrol ytes......Page 85
3. Structure Conductivity Correlation in Glasses......Page 86
4. Dynamic models......Page 88
References......Page 89
2. Structure Refinement of CusGeSB I1 and Ag7TaS6 11 using intensity data from multiple-twinned crystals......Page 90
3. Superposed projections along six directions of the structure of Cu8GeS6 I1......Page 91
References......Page 93
2. Counterion effects and NCL-response in glasses......Page 94
3. Lattice model of ion conducting polymers......Page 95
4. Outlook......Page 96
References......Page 97
2. Master Equations and Relaxation Mode Theory......Page 98
4. Non-Debye Conductivity in Random Lattices......Page 99
7. Incoherent Scattering Function......Page 101
References......Page 102
2. Experiments......Page 103
3.1. Pristine AgI......Page 104
3.2. AgI-AgPOj glass......Page 106
3.3. (O.dS)AgI-(O.lS)Ag2 WOJ groLFS......Page 107
3.4. AgI-yA1203 composite......Page 108
3.5. AgI-anatase composite......Page 110
References......Page 112
2. The random barrier model (RBM)......Page 114
2. Three ‘classical’ arguments against barrier......Page 115
3. Dc conductivity in the RBM......Page 116
4. Ac conductivity in the RBM......Page 117
5. The RBM versus experiment......Page 118
References......Page 119
2. Experimental details......Page 120
3.1. Electrical conductivity......Page 121
3.2. Thermal properties......Page 122
3.3. EXAFS data......Page 123
3.4. Diffraction data......Page 124
4.1. Coordination environments......Page 125
4.2. Nmork structures......Page 126
References......Page 128
2. Fundamentals......Page 130
3. Electric Modulus Formalism......Page 131
4. Scaling Analyses......Page 133
4.2 Modified-Summerfield Scaling......Page 135
4.3 Non-Summerfield Scaling......Page 136
References......Page 137
2.1. Introduction......Page 139
3. Reflection Spectra......Page 140
4. Luminescence......Page 141
5.2 Hole spectra......Page 142
5.4 Potential Curve......Page 143
References......Page 144
1. Introduction......Page 146
2. Experimental......Page 147
3. Results and discussion......Page 148
References......Page 151
3.1. Defects......Page 152
3.2. Mean square displacement......Page 153
References......Page 155
2 Experiments......Page 156
3.2 MAS-NMR spectrum......Page 157
3.3 The line width of Liz V, 0 5......Page 158
4 Discussion......Page 159
References......Page 160
1. Introduction......Page 162
2. Diffusion experiments by short-lived RNBs......Page 163
2.2 18, 20 F case: B-emitter......Page 164
3. Development of polarized RNB......Page 166
References......Page 167
1 Introduction......Page 168
3 Results and Discussion......Page 169
References......Page 172
1. Introduction......Page 174
2. Experimental......Page 175
3. Result and discussion......Page 176
4. Summary......Page 178
References......Page 179
2. Experimental Procedure......Page 180
3.2. X-ray diffraction and Rietveld analysis......Page 181
3.3. NMR results......Page 184
4. Conclusion......Page 185
References......Page 186
3.1. Crystal structures......Page 187
3.2. Lithiation Mechanism......Page 188
4. Conclusions......Page 189
References......Page 190
1. Introduction......Page 191
3. Model of the ac Response......Page 192
4.1. Single crystal of oxide ion conductor BICUVOX......Page 193
4.2. Li+ ion conducting oxide glasses......Page 194
4.3. Polymer electrolytes PEO-LiTFSl......Page 195
4.4. Lithium manganese spinel - polaronic conductor......Page 197
5. Discussion......Page 198
References......Page 200
2. Experimental......Page 202
3. Results and Discussion......Page 203
References......Page 205
1. Introduction......Page 206
3.1 Temperature Dependence......Page 208
3.2 Curve fitting......Page 209
3.3 Requency Dependence......Page 210
References......Page 211
2. Experiments......Page 212
3. Discussion......Page 213
References......Page 218
Author Index......Page 220