Sugawara Operators for Classical Lie Algebras

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): Alexander Molev
Series: Mathematical Surveys and Monographs 229
Publisher: American Mathematical Society
Year: 2018

Language: English
Pages: 321

Cover......Page 1
Title page......Page 4
Contents......Page 8
Preface......Page 12
1.1. Primitive idempotents for the symmetric group......Page 16
1.2. Primitive idempotents for the Brauer algebra......Page 21
1.3. Traces on the Brauer algebra......Page 29
1.4. Tensor notation......Page 32
1.5. Action of the symmetric group and the Brauer algebra......Page 34
1.6. Bibliographical notes......Page 36
2.1. Invariants in type ......Page 38
2.2. Invariants in types , and ......Page 43
2.3. Symmetrizer and extremal projector......Page 54
2.4. Bibliographical notes......Page 56
3.1. Definition and basic properties......Page 58
3.2. Identities and invertibility......Page 60
3.3. Bibliographical notes......Page 66
4.1. Matrix presentations of simple Lie algebras......Page 68
4.2. Harish-Chandra isomorphism......Page 70
4.3. Factorial Schur polynomials......Page 73
4.4. Schur–Weyl duality......Page 75
4.5. A general construction of central elements......Page 76
4.6. Capelli determinant......Page 78
4.7. Permanent-type elements......Page 80
4.8. Gelfand invariants......Page 81
4.9. Quantum immanants......Page 82
4.10. Bibliographical notes......Page 84
5.1. Harish-Chandra isomorphism......Page 86
5.2. Brauer–Schur–Weyl duality......Page 89
5.3. A general construction of central elements......Page 91
5.4. Symmetrizer and anti-symmetrizer for _{}......Page 93
5.5. Symmetrizer and anti-symmetrizer for _{}......Page 98
5.6. Manin matrices in types , and ......Page 104
5.7. Bibliographical notes......Page 105
6.1. Center of a vertex algebra......Page 106
6.2. Affine vertex algebras......Page 108
6.3. Feigin–Frenkel theorem......Page 111
6.4. Affine symmetric functions......Page 116
6.5. From Segal–Sugawara vectors to Casimir elements......Page 118
6.6. Center of the completed universal enveloping algebra......Page 119
6.7. Bibliographical notes......Page 121
7.1. Segal–Sugawara vectors......Page 122
7.2. Sugawara operators in type ......Page 129
7.3. Bibliographical notes......Page 132
8.1. Segal–Sugawara vectors in types and ......Page 134
8.2. Low degree invariants in trace form......Page 143
8.3. Segal–Sugawara vectors in type ......Page 149
8.4. Low degree invariants in trace form......Page 157
8.5. Sugawara operators in types , and ......Page 160
8.6. Bibliographical notes......Page 162
9.1. Mishchenko–Fomenko subalgebras......Page 164
9.2. Vinberg’s quantization problem......Page 170
9.3. Generators of commutative subalgebras of (_{})......Page 172
9.4. Generators of commutative subalgebras of (_{}) and (_{})......Page 180
9.5. Bibliographical notes......Page 182
10.1. Yangian for _{}......Page 184
10.2. Dual Yangian for _{}......Page 192
10.3. Double Yangian for _{}......Page 195
10.4. Invariants of the vacuum module over the double Yangian......Page 198
10.5. From Yangian invariants to Segal–Sugawara vectors......Page 200
10.6. Screening operators......Page 201
10.7. Bibliographical notes......Page 205
11.1. Yangian for _{}......Page 206
11.2. Dual Yangian for _{}......Page 217
11.3. Screening operators......Page 221
11.4. Bibliographical notes......Page 226
12.1. Poisson vertex algebras......Page 228
12.2. Generators of ()......Page 231
12.3. Chevalley projection......Page 241
12.4. Screening operators......Page 243
12.5. Bibliographical notes......Page 256
13.1. Feigin–Frenkel centers and classical -algebras......Page 258
13.2. Yangian characters and classical -algebras......Page 270
13.3. Harish-Chandra images of Sugawara operators......Page 274
13.4. Harish-Chandra images of Casimir elements......Page 278
13.5. Bibliographical notes......Page 283
14.1. Bethe ansatz equations......Page 284
14.2. Gaudin Hamiltonians and eigenvalues......Page 286
14.3. Bibliographical notes......Page 290
15.1. Free field realization of _{}......Page 292
15.2. Free field realization of _{}......Page 295
15.3. Free field realization of _{2}......Page 299
15.4. Wakimoto modules in type ......Page 302
15.5. Wakimoto modules in types and ......Page 304
15.6. Wakimoto modules in type ......Page 307
15.7. Bibliographical notes......Page 309
Bibliography......Page 310
Index......Page 318
Back Cover......Page 321