Subwavelength and Nanometer Diameter Optical Fibers

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Subwavelength and Nanometer Diameter Optical Fibers provides a comprehensive and up-to-date coverage of research on nanoscale optical fibers including the basic physics and engineering aspects of the fabrication, properties and applications. The book discusses optical micro/nanofibers that represent a perfect fusion of optical fibers and nanotechnology on subwavelength scale and covers a broad range of topics in modern optical engineering, photonics and nanotechnology spanning from fiber optics, near-field optics, nonlinear optics, atom optics to nanofabrication and microphotonic components/devices. It is intended for researchers and graduate students in the fields of photonics, nanotechnology, optical engineering and materials science. Dr. Limin Tong is a professor at Department of Optical Engineering and State Key Laboratory of Modern Optical Instrumentation of Zhejiang University, China; Dr. Michael Sumetsky is a researcher at OFS Laboratories, USA.

Author(s): Limin Tong, Michael Sumetsky
Series: ADVANCED TOPICS IN SCIENCE AND TECHNOLOGY IN CHINA
Edition: 1st Edition.
Publisher: Springer
Year: 2010

Language: English
Pages: 239

Cover......Page 1
ADVANCED TOPICS
IN SCIENCE AND TECHNOLOGY IN CHINA......Page 2
Subwavelength and
Nanometer Diameter
Optical Fibers......Page 4
ISBN 9783642033612......Page 5
Preface......Page 6
Table of Contents
......Page 8
1.1 A Brief History of Micro- and Nanofibers......Page 12
1.2 Concepts of MNFs and the Scope of this Book......Page 14
References......Page 18
2.1.1 Mathematic Model......Page 26
2.1.2 Single-mode Condition and Fundamental Modes......Page 28
2.1.3 Fractional Power Inside the Core and Effective Diameter......Page 33
2.1.4 Group Velocity and Waveguide Dispersion......Page 36
2.2.1 Basic Equations......Page 39
2.2.2 Conventional and Adiabatic Perturbation Theory......Page 42
2.2.3 Transmission Loss Caused by a Weak and Smooth Nonuniformity......Page 43
2.3 Theory of MNF Tapers......Page 44
2.3.1 Semiclassical Solution of the Wave Equation in the Adiabatic Approximation and Expression of Radiation Loss......Page 45
2.3.2 Optics of Light Propagation Along the Adiabatic MNF Tapers......Page 46
2.3.3 Example of a Conical MNF Taper......Page 47
2.3.4 Example of a Biconical MNF Taper......Page 49
2.3.5 Example of an MNF Taper with Distributed Radiation Loss......Page 51
2.4 The Thinnest MNF Optical Waveguide......Page 53
2.5 Evanescent Coupling between Parallel MNFs: 3D-FDTD Simulation......Page 54
2.5.1 Model for FDTD Simulation......Page 55
2.5.2 Evanescent Coupling between two Identical Silica MNFs......Page 56
2.5.3 Evanescent Coupling between two Silica MNFs with Different Diameters......Page 61
2.5.4 Evanescent Coupling between a Silica MNF and a Tellurite MNF......Page 62
2.6 Endface Output Patterns......Page 64
2.6.1 MNFs with Flat Endfaces......Page 65
2.6.2 MNFs with Angled Endfaces......Page 68
2.6.3 MNFs with Spherical and Tapered Endfaces......Page 70
2.7.2 MNF Loop Resonators......Page 71
2.7.3 MNF Coil Resonators......Page 75
References......Page 80
3 Fabrication of MNFs......Page 84
3.1 Taper Drawing Techniques......Page 85
3.2 Taper-drawing Fabrication of Glass MNFs......Page 88
3.2.1 Taper Grawing MNFs Rom Glass Fibers......Page 89
3.2.2 Drawing MNFs Directly from Bulk Glasses......Page 100
3.3 Drawing Polymer MNFs from Solutions......Page 102
References......Page 105
4.1 Micro/Nanomanipulation and Mechanical Properties of MNFs......Page 110
4.1.1 Visibility of MNFs......Page 111
4.1.2 MNF Manipulation......Page 112
4.1.3 Tensile Strengths of MNFs......Page 118
4.2.1 Optical Losses......Page 120
4.2.2 Effect of the Substrate......Page 130
References......Page 133
5 MNF-based Photonic Components and Devices......Page 136
5.1.1 Linear Waveguides......Page 137
5.1.2 Waveguide Bends......Page 144
5.2.1 Micro-couplers......Page 146
5.2.2 Mach-Zehnder Interferometers......Page 149
5.2.3 Sagnac Interferometers......Page 152
5.3.1 MNF Loop Resonator (MLR) Fabricated by Macro-Manipulation......Page 153
5.3.2 Knot MLR Fabricated by Micro-Manipulation......Page 157
5.3.3 Experimental Demonstration of MCR......Page 158
5.4.1 Short-Pass Filters......Page 162
5.4.2 Add-Drop Filters......Page 165
5.5 MNF Lasers......Page 168
5.5.1 Modeling MNF Ring Lasers......Page 170
5.5.2 Numerical Simulation of Er3+ and Yb3+ Doped MNF Ring Lasers......Page 176
5.5.3 Er3+ and Yb3+ Codoped MNF Ring Lasers......Page 181
5.5.4 Evanescent-Wave-Coupled MNF Dye Lasers......Page 185
References......Page 189
6.1 Introduction......Page 198
6.2 Application of a Straight MNF for Sensing......Page 200
6.2.2 Hydrogen MNF Sensor......Page 201
6.2.3 Molecular Absorption MNF Sensor......Page 203
6.2.4 Humidity and Gas Polymer MNF Sensor......Page 204
6.2.6 Atomic Fluorescence MNF Sensor......Page 207
6.3 Application of Looped and Coiled MNF for Sensing......Page 209
6.3.1 Ultra-Fast Direct Contact Gas Temperature Sensor......Page 211
6.4 Resonant Photonic Sensors Using MNFs for Input and Output Connections......Page 213
6.4.1 MNF/Microsphere and MNF/Microdisk Sensor......Page 214
6.4.2 MNF/Microcylinder and MNF/Microcapillary Sensors .......Page 219
6.4.3 Multiple-Cavity Sensors Supported by MNFs......Page 221
References......Page 223
7.1 Optical Nonlinear Effects in MNFs......Page 226
7.2 MNFs for Atom Optics......Page 230
References......Page 233
Index......Page 236