Student Solution Manual for Foundation Mathematics for the Physical Sciences

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This Student Solution Manual provides complete solutions to all the odd-numbered problems in Foundation Mathematics for the Physical Sciences. It takes students through each problem step-by-step, so they can clearly see how the solution is reached, and understand any mistakes in their own working. Students will learn by example how to arrive at the correct answer and improve their problem-solving skills.

Author(s): K. F. Riley, M. P. Hobson
Edition: 1
Publisher: Cambridge University Press
Year: 2011

Language: English
Pages: 224
Tags: Физика;Матметоды и моделирование в физике;

Cover......Page 1
Half-title......Page 3
Title......Page 5
Copyright......Page 6
Contents......Page 7
Preface......Page 9
Powers and logarithms......Page 11
Dimensions......Page 14
Binomial expansion......Page 16
Trigonometric identities......Page 17
Inequalities......Page 19
Commutativity and associativity......Page 22
Polynomial equations......Page 24
Coordinate geometry......Page 27
Partial fractions......Page 32
Proof by induction and contradiction......Page 34
Necessary and sufficient conditions......Page 37
3 Differential calculus......Page 40
4 Integral calculus......Page 53
5 Complex numbers and hyperbolic functions......Page 64
6 Series and limits......Page 77
7 Partial differentiation......Page 92
8 Multiple integrals......Page 109
9 Vector algebra......Page 119
10 Matrices and vector spaces......Page 132
11 Vector calculus......Page 150
12 Line, surface and volume integrals......Page 165
13 Laplace transforms......Page 180
14 Ordinary differential equations......Page 185
15 Elementary probability......Page 208
A: Physical constants......Page 224