Structural Modeling of Metamaterials

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book discusses the theoretical foundations of the structural modeling method applied to metamaterials. This method takes into account the parameters of the crystal lattice, the size of the medium particles, as well as their shape and constants of force interactions between them. It provides mathematical models of metamaterials that offer insights into the qualitative influence of the local structure on the effective elastic moduli of the considered medium and into performing theoretical estimations of these quantities. This book is useful for researchers working in the fields of solid mechanics, physical acoustics, and condensed matter physics, as well as for graduate and postgraduate students studying mathematical modeling methods.


Author(s): Vladimir I. Erofeev, Igor S. Pavlov
Series: Advanced Structured Materials, 144
Publisher: Springer
Year: 2020

Language: English
Pages: 209
City: Cham

Preface
Introduction
References
Contents
1 Theoretical Basis of the Structural Modeling Method
1.1 Review of References
1.1.1 Discrete and Continuum Models of Solids: A Brief Historical Review
1.1.2 Development of Models of Microstructured Solids with Account of Particle Rotation
1.1.3 Experimental Research of Dynamic Properties of Microstructured Media
1.2 Methods of Description of Different Scale Levels
1.3 Limits of Applicability of the Classical Mechanics Laws to Modeling of Generalized Continua
1.3.1 Quantum and Classical Descriptions of Microparticles
1.3.2 The Uncertainty Relation
1.3.3 A Microparticle as a Localized Wave Packet
1.3.4 The Conformity Principle
1.4 Principles of the Structural Modeling Method
1.5 Conclusions
References
2 A 2D Lattice with Dense Packing of the Particles
2.1 The Discrete Model for a Hexagonal Lattice Consisting of Round Particles
2.2 The Continual Approximation
2.3 Influence of Microstructure on Acoustic Properties of a Medium
2.4 Dispersion Properties of Normal Waves
2.4.1 Dispersion Properties of the Discrete Model
2.4.2 Dispersion Properties of the Continual Model
2.5 Conclusions
References
3 A Two-Dimensional Lattice with Non-dense Packing of Particles
3.1 The Discrete Model for an Anisotropic Medium Consisting of Ellipse-Shaped Particles
3.2 The Continuum Approximation
3.2.1 Dependence of the Anisotropy of the Medium on Its Microstructure
3.2.2 A Square Lattice of Round Particles
3.2.3 A Chain of Ellipse-Shaped Particles
3.3 Influence of Microstructure on Acoustic Properties of the Medium
3.3.1 Dependence of the Elastic and Rotational Wave Velocities on the Shape of the Particles in the 1D Lattice
3.3.2 Dependence of the Acoustic Characteristics of the 2D Anisotropic Medium on the Microstructure Parameters
3.4 Dispersion Properties of Normal Waves
3.4.1 Dispersion Properties of the Discrete Model
3.4.2 Dispersion Properties of the Continual Model
3.5 Conclusions
References
4 Application of the 2D Models of Media with Dense and Non-dense Packing of the Particles for Solving the Parametric Identification Problems
4.1 Reduced (Gradient) Models of the Theory of Elasticity
4.2 Problems of the Material Identification
4.2.1 Identification of the Medium with Hexagonal Symmetry
4.2.2 Identification of the Medium with Cubic Symmetry
4.3 Comparison with the Cosserat Continuum Theory
4.4 Influence of the Microstructure on the Poisson’s Ratio of an Isotropic Medium
4.5 Influence of the Microstructure on the Poisson’s Ratios of the Anisotropic Medium
4.6 Conclusions
References
5 Nonlinear Models of Microstructured Media
5.1 A Rectangular Lattice Consisting of Ellipse-Shaped Particles
5.2 Estimation of the Nonlinearity Coefficients of the Mathematical Model of the Square Lattice of Round Particles
5.3 The Square Lattice of Nanotubes
5.3.1 The Discrete Model
5.3.2 The Continual Approximation
5.3.3 Relationships Between the Macroparameters of the Material and the Parameters of Its Inner Structure
5.4 Conclusions
References
6 A Cubic Lattice of Spherical Particles
6.1 A Discrete 3D Model of a Crystalline Medium of Spherical Particles
6.2 Nonlinear Model of a One-Layer Medium of Spherical Particles
6.2.1 The Continuum Approximation
6.2.2 Dependency of the Macroparameters of a One-Layer Medium on the Parameters of Its Microstructure
6.2.3 3D Model of a Crystalline Medium of Spherical Particles
6.2.4 Continuum Approximation
6.2.5 Dependence of the Macroparameters of the 3D Medium on the Parameters of Its Microstructure
6.2.6 Comparison of the Proposed Model with the 3D Cosserat Continuum
6.3 Conclusions
References
7 Propagation and Interaction of Nonlinear Waves in Generalized Continua
7.1 Localized Strain Waves in a 2D Crystalline Medium with Non-dense Packing of the Particles
7.2 A 1D Medium Consisting of Ellipse-Shaped Particles and with Internal Stresses
7.2.1 Mechanical Model of a 1D Medium with Internal Stresses
7.2.2 Equations of the Gradient Theory of Elasticity for a 1D Medium with Internal Stresses
7.3 Self-modulation of Shear Strain Waves Propagating in a 1D Granular Medium
7.3.1 The Modulation Instability Areas
7.3.2 Forms of Wave Packets in the Case of the Modulation Instability
7.4 Nonlinear Longitudinal Waves in a Rod Made of an Auxetic Material
7.4.1 The Linear Mathematical Model. Dispersion Properties
7.4.2 The Nonlinear Mathematical Model. Stationary Strain Waves
7.4.3 Numerical Simulation of Soliton Interactions
7.5 Application of an Alternative Continualization Method for Analysis of Nonlinear Localized Waves in a Gradient-Elastic Medium
7.5.1 One-Dimensional Model of a Nonlinear Gradient-Elastic Continuum
7.5.2 Nonlinear Strain Waves
7.6 Conclusions
References
Discussion of the Results
Appendix A Expressions for Elongation of the Springs in the Hexagonal Lattice
Appendix B Expressions for Elongation of the Springs in the Rectangular Lattice
References