Strain Hardening Cementitious Composites: SHCC5

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This volume gathers the latest advances, innovations, and applications in the field of cementitious composites. It covers advanced fiber-reinforced concrete materials such as strain-hardening cement-based composites (SHCC), textile-reinforced concrete (TRC) and high-performance fiber-reinforced cement-based composites (HPFRCC). All these new materials exhibit pseudo-ductile behavior resulting from the formation of multiple, fine cracks when subject to tensile loading. The use of such types of fiber-reinforced concrete could revolutionize the planning, development, dimensioning, structural and architectural design, construction of new and strengthening and repair of existing buildings and structures in many areas of application. The contents reflect the outcomes of the activities of SHCC5 (International RILEM Workshop on Strain Hardening Cementitious Composites) in 2022.

Author(s): Minoru Kunieda, Toshiyuki Kanakubo, Tetsushi Kanda, Koichi Kobayashi
Series: RILEM Bookseries, 39
Publisher: Springer
Year: 2023

Language: English
Pages: 348
City: Cham

Preface
Contents
RILEM Publications
RILEM Proceedings (PRO)
RILEM Reports (REP)
New Materials and Process Technology
Mechanical Performance of Strain Hardening Limestone Calcined Clay Cementitious Composites (SHLC4) Subject to Wet-Dry Cycles
1 Introduction
2 Experimental Program
2.1 Materials and Composition
2.2 Specimen Preparation and Testing Configuration
3 Results and Discussion
3.1 Uniaxial Tension Test of Reference SHLC4
3.2 Autogenous Healing in SHLC4
4 Conclusion
References
The Use of Ultra-high Volume of Lime Stone Calcine Clay to Produce Basalt Fiber Reinforced Strain Hardening Cementitious Composites
1 Introduction
2 Materials and Testing
2.1 Constituents
2.2 Specimen Preparation
2.3 Testing Details
3 Results and Discussions
3.1 Fiber Properties
3.2 Compressive Strength
3.3 Pullout Results
3.4 Tensile Test Result
3.5 Durability Assessment
4 Conclusions
References
Utilization of Artificial Geopolymer Aggregates in High-Strength Engineered Cementitious Composites (HS-ECC)
1 Introduction
2 Experimental Program
2.1 Raw Materials
2.2 GPA Production
2.3 ECC Production
2.4 Testing Methods
3 Mechanical Properties
3.1 Tensile Performance
3.2 Compressive Strength
3.3 Comparison of Short- and Long-Term Overall Performance
4 Ductility Enhancement Mechanism of GPA in ECC
5 Conclusions
References
Engineered Geopolymer Composites (EGC) with Ultra-high Strength and Ductility
1 Introduction
2 Materials and Test Program
2.1 Raw Materials
2.2 Preparation of UHSD-EGC
2.3 Testing Methods
3 Results and Discussions
3.1 Compressive Strength
3.2 Tensile Performance
3.3 Strain Energy Density Under Tension
3.4 BSE Results of Matrix
4 Conclusions
References
Developing CO2-Sequstrating Strain-Hardening Magnesia-Based Composite (SHMC) with Hybrid Synthetic-Natural Fibers
1 Introduction
2 Experimental Programs
2.1 Materials
2.2 Single Fiber Pull-Out Test
2.3 Tensile Test
3 Results and Discussions
4 Conclusions
References
Fundamental Study on Mechanical Performances of FRCC Using Polypropylene Nanofibers
1 Introduction
2 Outline of the Experiment
2.1 Materials
2.2 Specimen Preparation and Curing
2.3 Three-Point Bending Test
2.4 Compressive Strength Test
2.5 SEM Observation
3 Results and Discussion
3.1 Mixing and Dispersion Methods of Nanofibers
3.2 Single Use of PP Nanofibers
3.3 Combined Use of PP Nanofibers with PVA Fibers
4 Conclusion
References
The Use of Strain Hardening Natural Fabric Reinforced Cement Based Composite Systems for Structural Applications
1 Introduction
2 Materials and Methods
3 Results and Discussions
4 Conclusions
References
Mechanical Properties of Fiber-Reinforced Cementitious Composites Manufactured Using 3D-Printing Technology
1 Introduction
2 3D-Printable Fiber-Reinforced Cementitious Composites
3 Experimental Program
3.1 Mixture Proportions and Raw Materials
3.2 Manufacturing of Specimens
3.3 Method for Mechanical Tests
4 Experiment Results
4.1 Compression Tests
4.2 Splitting Tensile Tests
4.3 Bending Tests
5 Conclusion
References
SHCC Reinforced 3D Printed Concrete
1 Introducing SHCC as Novel Freeform Reinforcement
2 Reinforcement Strategy
3 Experimental Program
3.1 Materials and Specimen Preparation
3.2 Characterisation Tests
3.3 Test Protocols
4 Results
4.1 Flexural Stress Results
4.2 Ductility and Multiple Cracking
5 Demonstrative Design Calculations for SHCC-3DCP
6 Conclusions
References
Mechanism and Characterization of Cracking
Influence of Placing Thickness on Fiber Orientation and Bridging Law of FRCC
1 Introduction
2 Visualization Simulation of Placing Thickness on Fiber Orientation
2.1 Materials and Simulation Method for Test
2.2 Image Processing and Statistics of Fiber Distribution
3 Calculation of Bridging Law and Section Analysis
3.1 Calculation of Bridging Law
3.2 Section Analysis
4 Conclusion
References
Comparison Between Experimentally Determined and Theoretical Fiber Orientation Distribution in Strain Hardening Cementitious Composites (SHCC)
1 Introduction
2 Fiber Inspection Techniques
2.1 Sample Preparation and Image Acquisition
2.2 Image Processing
2.3 Determining the Fiber Orientation
3 Comparison Between Experimentally Determined and Theoretical Fiber Orientation Distribution
3.1 Experimental Results
3.2 Wall Effect Analysis
3.3 Comparison Between the Test Results and Theoretical Analysis
4 Flattening Effect Analysis
4.1 Introduction and Assumptions
4.2 Case Studies and Numerical Analysis
5 Bridging Stress Analysis
6 Conclusion
References
A Depth-Dependent Fiber-Bridging Model to Predict the Tensile Properties Recovery Induced by the Self-healing of Strain-Hardening Cementitious Composites
1 Introduction
2 Review: Existing Fiber-Bridging Analytical Model
3 The Methodology of Depth-Dependent and Self-healing Model
3.1 To Quantify the Depth-Dependency
3.2 To Quantify the Effect of Fiber-Matrix Interfacial Healing
4 Parametric Study with the New Model
5 Summary
References
MicroCT and 3D Image Processing and Analysis to Investigate Strain-Hardening Cement-Based Composites (SHCC)
1 Introduction
2 Experimental Program
3 Results and Discussions
4 Conclusions
References
A New Method to Quantitatively Characterize the Porosity of Fiber/Matrix Interfacial Transition Zone (ITZ) via Longitudinal Cross-Sections
1 Introduction
2 Materials and Methods
2.1 Materials
2.2 Detailed Sample Preparation Method
3 Results and Discussion
3.1 Porosity Gradient
3.2 Unhydrated Clinker Gradient
4 Conclusions
References
Pull-Out Behavior of Single Fiber Embedded in Porosity Free Concrete(PFC)
1 Introduction
2 Outline of Experiments
2.1 Test Series
2.2 Specimens
2.3 Experimental Setup
3 Experimental Results
3.1 Matrix Strength
3.2 Curing Condition
3.3 Type of Fiber
3.4 Embedment Length
4 Conclusions
References
Experimental Study on Bond-Slip Behavior of Steel Reinforcement in High-Strength Strain-Hardening Cementitious Composites (SHCC) Under Direct Tension
1 Introduction
2 Experimental Program
2.1 Materials
2.2 Specimen Preparation and Testing Procedure
3 Results and Discussions
4 Conclusions
References
Crack Width Evaluation of DFRCC Members Reinforced with Braided AFRP Bar
1 Introduction
2 Pullout Bond Test
2.1 Outline of Pullout Bond Test
2.2 Experiment Results
3 Crack Width Prediction Formula
4 Uniaxial Tension Test
4.1 Outline of Uniaxial Tension Test
4.2 Experiment Results
4.3 Adaptability of Calculation Formulas with Experimental Results
5 Conclusion
References
Cracking Behaviour of Strain-Hardening Cementitious Composites (SHCC) Under Practical Creep Conditions
1 Introduction
2 Experimental Setup
2.1 Materials and Preparation
2.2 Quasistatic Characterisation Tests on SHCC
2.3 Restrained Creep Test Setup
3 Results and Discussion
4 Conclusions and Limitations
References
Influence of Loading Frequency and Force Level on the Cyclic Performance of Strain-Hardening Cement-Based Composites (SHCC)
1 Introduction
2 Experimental Setup and Testing Program
2.1 Material
2.2 Manufacturing and Preparation
2.3 Testing Program
3 Test Results
4 Conclusions
References
A Novel Deep Learning Model for End-to-End Characterization of Thin Cracking in SHCCs
1 Introduction
1.1 Related Work
2 Proposed Method
2.1 Background
2.2 Network Design of “Strain Hardening Segmentation Network” (SHSnet)
2.3 Proposed Novel Loss Function (PLF)
2.4 Crack Computation from Segmentation Mask
3 Data Collection and Training
4 Results and Applications
4.1 Training Ability
4.2 Comparison of the Quality of Crack Parameters
4.3 Comparison of Time in Compute Crack Parameters
5 Applications of SHSnet for Studies of SHCC
5.1 Crack Development in SHCC
5.2 Monitoring of Durability
6 Conclusions
References
Parametric Modeling of Flexural Response of Sandwich Composites
1 Introduction
2 Skin and Core Material Properties
3 Moment-Curvature Response Based on Force Equilibrium
4 Sandwich Model Validation
4.1 Material Parameters Identification
4.2 Flexural Simulation of Sandwich Composites
5 Conclusion
References
Mix Optimisation and Bending Behaviour of Cement Composites Reinforced with 3D Textiles and Microfibres
1 Introduction
2 Materials and Methods
2.1 Materials
2.2 Methods
3 Results and Discussion
3.1 Mix Optimisation
3.2 Mechanical Behaviour
3.3 Crack Pattern Analysis
4 Conclusions
References
Spacers for 3D Textiles as Reinforcement in Cement Composites: Influence on the Flexural and Cracking Behavior
1 Introduction
2 Materials and Methods
2.1 Material Selection and Reinforcement Configurations
2.2 TRC Manufacturing Process
2.3 Experimental Test Setup
3 Experimental Results and Discussion
4 Conclusions
References
Durability
Experimental Study on Autogenous Healing of Cracked SHCC Under Sustained Bending Loading
1 Introduction
2 Experimental Program
2.1 Materials and Mixture
2.2 Four-Point Bending Test and Autogenous Healing Operation
3 Results and Discussion
4 Conclusions
References
How Does Self-healing Under Sustained Loadings in Aggressive Water Affect the Constitutive Response of a UHPFRC?
1 Introduction
2 Experimental Program
2.1 Materials and Basic Mechanical Properties
2.2 Experimental Methodology
3 Results and Discussions
3.1 Results of Direct Tensile Tests
3.2 Results of Inverse Analysis
4 Conclusions
References
Acoustic Emission Technique for Monitoring Healing Induced Recovery of Mechanical Properties (HIRMP)
1 Introduction
1.1 Related Work
2 Proposed Method
2.1 Background
2.2 Computational Steps for Assessment of HIRMP
3 Experimental Details
4 Results and Discussions
4.1 Qualitative Application of Damage Parameters of MRAE
4.2 MRAE and HIRMP
5 Conclusions
References
Effects of Corrosion on Bond Behavior of Reinforcing Bar in Concrete and SHCC
1 Introduction
2 Experimental Procedure
3 Rebar Corrosion
4 Evaluation of Bond Behavior
5 Conclusions
References
Practical Applications
Follow-Up Review of Early SHCC Applications in Japan
1 Introduction
2 Trial Application of SHCC for Restoring the Appearance of ASR-Cracked Concrete Retaining Wall (2003 and 2008) [5]
2.1 Outline of Retaining Wall and Initial SHCC Shotcreting (April 2003) [6]
2.2 Thin Layer Shotcreting of SHCC (October 2008)
2.3 Follow-Up Survey (September 2020)
2.4 Technical Discussion
3 Application of SHCC to Concrete Hydraulic Structures as a Surface Repair Material (2005–)
3.1 Repair of Concrete Hydraulic Structures
3.2 Premixed SHCC Products
3.3 Repair Methods
3.4 SHCC Applications to Concrete Hydraulic Structures and Follow-Up Review
4 Application of SHCC to Emergency Bays in Hida Tunnel as a Protective Layer for Multilayer Lining (2007)
4.1 Hida Tunnel
4.2 Multilayer Shotcrete Lining Adopted for the Emergency Bays [7]
4.3 Follow-Up Review of Multilayer Shotcrete Lining
5 Application of SHCC to Viaducts of Tokaido Shinkansen as Protective Mortar for the Bases of Noise Barriers (2013–)
5.1 Large-Scale Renovation of Tokaido Shinkansen
5.2 Application of SHCC to the Bases of New-Type Noise Barriers
5.3 Technical Discussion and Follow-Up Review
6 Conclusions
References
Strain-Hardening Cement-based Composites (SHCC) for Impact Strengthening of Buildings: Recent Advances in the DFG Research Training Group 2250
1 Introduction
2 Structure and Goals of RTG2250/II
2.1 The Experimental Approach: SHCC Development and Assessment
2.2 Numerical Modeling Techniques for Optimizing Impact Resistance
2.3 Data-driven Research: Sustainability, Photogrammetry and Design Optimization
3 Conclusions and Outlook
References
Repair of a Hydraulic Structure with Different Strain-Hardening Cement-Based Composites
1 Introduction
2 The Structure
2.1 General
2.2 Structural Condition
3 Retrofitting
3.1 Surface Sectioning and Materials
3.2 Functionality of the Rehabilitation Layers
4 Implementation
4.1 Accompanying Laboratory Tests
4.2 Monitoring
5 Conclusion and Outlook
References
Overlay of RC Bridge Deck Deteriorated by ASR Using an Ultra High Performance-Strain Hardening Cementitious Composite (UHP-SHCC)
1 Introduction
2 Overlay on ASR-Deteriorated Reinforced Concrete Bridge Deck
2.1 Concept of Repair
2.2 Materials
2.3 Strength Tests and Condition After Execution
3 Evaluation of Cracking Potential
3.1 Introduction
3.2 Experiment Overview
3.3 Results and Discussion
4 Concluding Remarks
References
Full-Scale Experiment of AFt-UHPFRC for Overlay of Bridge Deck
1 Introduction
1.1 Background
1.2 AFt-UHPFRC
2 Full-Scale Construction Experiment
2.1 Outline
2.2 Test Conditions
3 Evaluation and Material Test
3.1 Outline
3.2 Fresh Properties of AFt-UHPFRC
3.3 Mechanical Properties of AFt-UHPFRC
3.4 Length Change of AFt-UHPFRC
3.5 Bond Strength
3.6 Porosity of the Specimen
3.7 Chloride Penetration Resistance
4 Conclusion
References
Characteristic of UHPFRC and New Applications
1 Introduction
2 Overview of High Seismic Performance RC Piers Using UHPFRC
3 Seismic Retrofit Method by UHPFRC for Existing Piers
4 Plastering Method
4.1 Mix Proportion of UHPFRC for Plastering Method
4.2 Cyclic Loading Test
5 Spraying Method
6 Conclusion
References
Author Index