Stochastic Mechanics: The Unification of Quantum Mechanics with Brownian Motion

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Stochastic mechanics is a theory that holds great promise in resolving the mathematical and interpretational issues encountered in the canonical and path integral formulations of quantum theories. It provides an equivalent formulation of quantum theories, but substantiates it with a mathematically rigorous stochastic interpretation by means of a stochastic quantization prescription.
The book builds on recent developments in this theory, and shows that quantum mechanics can be unified with the theory of Brownian motion in a single mathematical framework. Moreover, it discusses the extension of the theory to curved spacetime using second order geometry, and the induced Itô deformations of the spacetime symmetries.

The book is self-contained and provides an extensive review of stochastic mechanics of the single spinless particle. The book builds up the theory on a step by step basis. It starts, in chapter 2, with a review of the classical particle subjected to scalar and vector potentials. In chapter 3, the theory is extended to the study of a Brownian motion in any potential, by the introduction of a Gaussian noise. In chapter 4, the Gaussian noise is complexified. The result is a complex diffusion theory that contains both Brownian motion and quantum mechanics as a special limit. In chapters 5, the theory is extended to relativistic diffusion theories. In chapter 6, the theory is further generalized to the context of pseudo-Riemannian geometry. Finally, in chapter 7, some interpretational aspects of the stochastic theory are discussed in more detail. The appendices concisely review relevant notions from probability theory, stochastic processes, stochastic calculus, stochastic differential geometry and stochastic variational calculus.

The book is aimed at graduate students and researchers in theoretical physics and applied mathematics with an interest in the foundations of quantum theory and Brownian motion. The book can be used as reference material for courses on and further research in stochastic mechanics, stochastic quantization, diffusion theories on curved spacetimes and quantum gravity.

Author(s): Folkert Kuipers
Series: SpringerBriefs in Physics
Publisher: Springer
Year: 2023

Language: English
Pages: 131
City: Cham

Preface
Contents
About the Author
1 Introduction
1.1 A Brief History
1.2 Diffusion Theories
1.3 The Wick Rotation
1.4 Stochastic Mechanics
1.5 Time Reversibility
1.6 Hidden Variables
1.7 Outline for the Book
2 Classical Dynamics on mathbbRd
3 Stochastic Dynamics on mathbbRd
3.1 The Stochastic Law
3.2 Stochastic Phase Space
3.3 Stochastic Action
3.4 Stochastic Euler-Lagrange Equations
3.5 Boundary Conditions
3.6 The Momentum Process
3.7 Stochastic Hamilton-Jacobi Equations
3.8 Diffusion Equations
4 Complex Stochastic Dynamics on mathbbRd
4.1 Stochastic Action
4.2 Equations of Motion
4.3 Boundary Conditions
4.4 Diffusion Equations
5 Relativistic Stochastic Dynamics on mathbbRd,1
5.1 Equations of Motion
5.2 Diffusion Equations
6 Stochastic Dynamics on Pseudo-Riemannian Manifolds
6.1 Second Order Phase Space
6.2 Equations of Motion
6.3 Hamilton-Jacobi Equations
6.4 Diffusion Equations
6.5 Spacetime Symmetries
7 Stochastic Interpretation
7.1 Locality
7.2 Causality
7.3 Bell's Theorem
7.4 The Quantum Foam
8 Discussion
8.1 Conclusion
8.2 Outlook
Appendix A Review of Probability Theory
A.1 Probability Spaces
A.2 Random Variables
A.3 Expectation Value
A.4 Conditional Expectation
A.5 Change of Measure
A.6 L2-spaces
A.7 Generating Functions
Appendix B Review of Stochastic Processes
B.1 Stochastic Processes
B.2 Conditioning
B.3 Stopping Times
B.4 Semi-Martingales
B.5 Markov Processes
B.6 Quadratic Variation
B.7 Lévy Processes
B.8 Wiener Processes
B.9 L2-spaces
B.10 Generating Functionals
Appendix C Review of Stochastic Calculus
Appendix D Second Order Geometry
D.1 Maps Between First and Second Order Geometry
D.2 The Second Order Tangent Bundle
D.3 Stochastic Integration on Manifolds
Appendix E Construction of the Itô Lagrangian
Appendix F Stochastic Variational Calculus
F.1 Stratonovich-Euler-Lagrange Equations
F.2 Itô-Euler-Lagrange Equations
F.3 Hamilton-Jacobi-Bellman Equations
Appendix References