STDP enables spiking neurons to detect hidden causes of their inputs

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Institute for Theoretical Computer Science, Graz University of Technology
The principles by which spiking neurons contribute to the astounding computational
power of generic cortical microcircuits, and how spike-timing-dependent
plasticity (STDP) of synaptic weights could generate and maintain this computational
function, are unknown. We show here that STDP, in conjunction with
a stochastic soft winner-take-all (WTA) circuit, induces spiking neurons to generate
through their synaptic weights implicit internal models for subclasses (or
causes) of the high-dimensional spike patterns of hundreds of pre-synaptic neurons.
Hence these neurons will fire after learning whenever the current input best
matches their internal model. The resulting computational function of soft WTA
circuits, a common network motif of cortical microcircuits, could therefore be
a drastic dimensionality reduction of information streams, together with the autonomous
creation of internal models for the probability distributions of their input
patterns. We show that the autonomous generation and maintenance of this
computational function can be explained on the basis of rigorous mathematical
principles. In particular, we show that STDP is able to approximate a stochastic
online Expectation-Maximization (EM) algorithm for modeling the input data. A
corresponding result is shown for Hebbian learning in artificial neural networks.

Author(s): Nessler B., Pfeiffer M., Maass W.

Language: English
Commentary: 278740
Tags: Информатика и вычислительная техника;Искусственный интеллект;Нейронные сети