This book is intended for busy professionals working with data of any kind: engineers, BI analysts, statisticians, operations research, AI and machine learning professionals, economists, data scientists, biologists, and quants, ranging from beginners to executives. In about 300 pages, it covers many new topics, offering a fresh perspective on the subject, including rules of thumb and recipes that are easy to automate or integrate in black-box systems, as well as new model-free, data-driven foundations to statistical science and predictive analytics. The approach focuses on robust techniques; it is bottom-up (from applications to theory), in contrast to the traditional top-down approach. The material is accessible to practitioners with a one-year college-level exposure to statistics and probability. The compact and tutorial style, featuring many applications with numerous illustrations, is aimed at practitioners, researchers, and executives in various quantitative fields.
This book is based on several core articles and many tutorials that I have written over the last few years. Chapters are organized and grouped by themes: natural language processing (NLP), resampling, time series, central limit theorem, statistical tests, boosted models (ensemble methods), tricks and special topics, appendices, and so on. It is available for Data Science Central members exclusively. The text in blue consists of clickable links to provide the reader with additional references. Source code and Excel spreadsheets summarizing computations, are also accessible as hyperlinks for easy copy-and-paste or replication purposes.
Author(s): Vincent Granville
Publisher: Machine Learning Techniques
Year: 2019
Language: English
Pages: 309