In the current climate of increasing complexity and functional integration in all areas of engineering and technology, stability and control are becoming essential ingredients of engineering knowledge. Many of todaya?™s products contain multiple engineering technologies, and what were once simple mechanical, hydraulic or pneumatic products now contain integrated electronics and sensors. Control theory reduces these widely varied technical components into their important dynamic characteristics, expressed as transfer functions, from which the subtleties of dynamic behaviours can be analyzed and understood.
Stability and Control of Aircraft Systems is an easy-to-read and understand text that describes control theory using minimal mathematics. It focuses on simple rules, tools and methods for the analysis and testing of feedback control systems using real systems engineering design and development examples.
Clarifies the design and development of feedback control systems
Communicates the theory in an accessible manner that does not require the reader to have a strong mathematical background
Illustrated throughout with figures and tables
Stability and Control of Aircraft Systems provides both the seasoned engineer and the graduate with the know-how necessary to minimize problems with fielded systems in the area of operational performance.
Author(s): Roy Langton
Series: Aerospace Series PEP
Publisher: Wiley
Year: 2006
Language: English
Commentary: 31745
Pages: 256
Tags: Автоматизация;Теория автоматического управления (ТАУ);Книги на иностранных языках;
Contents......Page 7
Series Preface......Page 11
Preface......Page 13
1 Developing the Foundation......Page 19
1.1.1 International System of Units (SI)......Page 20
1.1.2 US/Imperial Units System......Page 21
1.2 Block Diagrams......Page 22
1.2.1 Examples of Summation (or Comparison) Devices......Page 23
1.3 Differential Equations......Page 29
1.3.1 Using the ‘D’ Notation......Page 30
1.4 Spring–Mass System Example......Page 32
1.4.1 The Standard Form of Second-order System Transfer Function......Page 33
1.5 Primer on Complex Numbers......Page 36
1.5.1 The Complex Sinusoid......Page 37
1.6 Chapter Summary......Page 39
2.1 The Generic Closed Loop System......Page 41
2.1.1 The Simplest Form of Closed Loop System......Page 42
2.2 The Concept of Stability......Page 44
2.3 Response Testing of Control Systems......Page 46
2.4 The Integration Process......Page 50
2.5 Hydraulic Servo-actuator Example......Page 55
2.6 Calculating Frequency Response......Page 58
2.6.1 Frequency Response of a First-order Lag......Page 61
2.6.2 Frequency Response of a Second-order System......Page 63
2.7 Aircraft Flight Control System Example......Page 65
2.7.1 Control System Assumptions......Page 66
2.7.2 Open Loop Analysis......Page 67
2.7.3 Closed Loop Performance......Page 71
2.8.1 The Nyquist Diagram......Page 72
2.8.2 Deriving Closed Loop Response from Nyquist Diagrams......Page 77
2.8.3 The Nichols Chart......Page 80
2.8.4 Graphical Methods – Summary Comments and Suggestions......Page 84
2.9 Chapter Summary......Page 86
3.1 Control System Requirements......Page 89
3.2 Compensation Methods......Page 90
3.2.1 Proportional Plus Integral Control......Page 91
3.2.2 Proportional Plus Integral Plus Derivative Control......Page 94
3.2.3 Lead–Lag Compensation......Page 96
3.2.4 Lag–Lead Compensation......Page 99
3.2.5 Feedback Compensation......Page 102
3.3.1 Proportional Plus Integral Example......Page 107
3.3.2 Lead–Lag Compensation Example......Page 115
3.3.3 Class 2 System Design Example......Page 119
3.4 Chapter Summary......Page 132
4.1 An Overview of the Application of Laplace Transforms......Page 135
4.2 The Evolution of the Laplace Transform......Page 136
4.2.1 Proof of the General Case......Page 139
4.3 Applying Laplace Transforms to Linear Systems Analysis......Page 142
4.3.1 Partial Fractions......Page 147
4.4 Laplace Transforms – Summary of Key Points......Page 156
4.5 Root Locus......Page 158
4.5.1 Root Locus Construction Rules......Page 159
4.5.2 Connecting Root Locus to Conventional Linear Analysis......Page 164
4.6 Root Locus Example......Page 170
4.7 Chapter Summary......Page 173
5.1 Definition of Nonlinearity Types......Page 175
5.2 Continuous Nonlinearities......Page 177
5.2.1 Engine Fuel Control System Example......Page 179
5.3 Discontinuous Nonlinearities......Page 185
5.3.1 Stability Analysis with Discontinuous Nonlinearities......Page 190
5.4 The Transport Delay......Page 194
5.5 Simulation......Page 197
5.6 Chapter Summary......Page 206
6 Electronic Controls......Page 209
6.1 Analog Electronic Controls......Page 211
6.1.1 The Operational Amplifier......Page 212
6.1.2 Building Analog Control Algorithms......Page 213
6.2.1 Signal Conversion......Page 215
6.2.2 Digital Controller Architectures......Page 219
6.3 The Stability Impact of Digital Controls......Page 224
6.4 Digital Control Design Example......Page 228
6.5.1 The Integrator......Page 233
6.5.2 The First-order Lag......Page 234
6.5.3 The Pseudo Derivative......Page 235
6.6 Chapter Summary......Page 236
7 Concluding Commentary......Page 239
7.1 An Overview of the Material......Page 240
7.2 Graphical Tools......Page 243
7.3.1 Integral Wind-up......Page 245
7.3.3 Mechanical Stiffness Estimates are Always High......Page 246
7.4 Laplace Transforms and Root Locus Techniques......Page 247
7.5 Nonlinearities......Page 248
7.6 Digital Electronic Control......Page 250
7.7 The Way Forward......Page 251
Index......Page 253