Springer Handbook of Ocean Engineering

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This handbook is the definitive reference for the interdisciplinary field that is ocean engineering. It integrates the coverage of fundamental and applied material and encompasses a diverse spectrum of systems, concepts and operations in the maritime environment, as well as providing a comprehensive update on contemporary, leading-edge ocean technologies. Coverage includes an overview on the fundamentals of ocean science, ocean signals and instrumentation, coastal structures, developments in ocean energy technologies and ocean vehicles and automation. It aims at practitioners in a range of offshore industries and naval establishments as well as academic researchers and graduate students in ocean, coastal, offshore and marine engineering and naval architecture.

The Springer Handbook of Ocean Engineering is organized in five parts: Part A: Fundamentals, Part B: Autonomous Ocean Vehicles, Subsystems and Control, Part C: Coastal Design, Part D: Offshore Technologies, Part E: Energy Conversion

Author(s): Manhar R Dhanak; Nikolas I Xiros
Series: Springer Handbooks
Edition: Hardcover
Publisher: Springer
Year: 2016

Language: English
Pages: 1345

Preface......Page 6
About the Editors......Page 7
About the Part Editors......Page 8
List of Authors......Page 10
Contents......Page 16
List of Abbreviations......Page 27
1.1 Enabling Maritime Design and Development......Page 33
1.3 Basics......Page 34
1.4 Applications......Page 36
1.5 Future Trends......Page 39
References......Page 40
Part A Fundamentals......Page 42
2.1 Atmospheric Processes......Page 45
2.2 Ocean Structure......Page 47
2.3 Oceanic Processes......Page 48
2.4 Surface Gravity Waves......Page 49
2.5 Wind-Forced Ocean Processes......Page 58
2.6 Deep Ocean Currents......Page 68
2.7 Coastal Ocean Currents......Page 69
2.8 Ocean Surface Tides......Page 70
2.9 Oceanic Internal Waves and Tides......Page 73
References......Page 75
3 Metocean Extreme and Operating Conditions......Page 77
3.1 Quantifying the Metocean Environment......Page 78
3.2 Overview of WWC Processes......Page 79
3.3 Measurements......Page 85
3.4 Modeling......Page 88
3.5 Joint Events......Page 91
3.6 Operational Criteria......Page 94
3.7 Extreme Criteria......Page 96
References......Page 102
4.1 Ocean Surface Waves......Page 107
4.2 Wave Theories......Page 108
4.3 Properties of Small Amplitude Gravity Waves......Page 110
4.4 Weakly Nonlinear Deep Water Wave Theories......Page 113
4.5 Shallow Water Wave Theories......Page 117
4.6 Transformation of Waves Approaching Land......Page 120
4.7 Computational Method for Fully Nonlinear Waves......Page 123
4.8 Wave Forces on Fixed and Floating Structures......Page 124
4.9 Concluding Remarks......Page 127
References......Page 128
5.2 Temperature......Page 130
5.3 Salinity......Page 132
5.4 Density......Page 133
5.5 Temperature–Salinity Relationships......Page 134
5.8 Coefficient of Thermal Expansion......Page 135
5.11 Light Transmission......Page 136
References......Page 138
6.1 Chemical and Physical Composition of Seawater......Page 139
6.3 Marine Corrosion of Steel......Page 141
6.4 Modeling Longer Term Corrosion of Steel......Page 144
6.5 Other Influences on Steel Corrosion......Page 146
6.6 Pitting Corrosion of Steel......Page 147
6.7 Some Other Important Materials......Page 149
References......Page 151
7.1 Dimensional Analysis, Basic Estimation, and Model Testing......Page 154
7.2 Fluid Statics......Page 180
7.3 Hydrodynamics......Page 182
References......Page 201
8.1 Electromagnetism in an Ocean Environment......Page 203
8.2 Electromagnetic Field Theory......Page 204
8.3 Plane Wave Propagation......Page 206
8.4 Reflection and Transmission of a Plane Wave at the Surface of Fresh Water......Page 208
8.5 Plane Wave Incident on Seawater......Page 210
8.6 Magnetic and Electric Dipoles in an Unbounded Ocean......Page 212
8.7 Magnetic and Electric Dipoles in a Bounded Ocean......Page 214
8.8 Electromagnetic Propagation in the Ocean at Optical Wavelengths......Page 219
References......Page 221
9.1 Discrete-Time Systems......Page 222
9.2 Digital Filters......Page 231
9.3 The Fast Fourier Transform (FFTfast!Fourier transform)......Page 236
9.4 Waveform Analysis......Page 241
9.5 Optimal Signal Estimation......Page 245
References......Page 250
10.1 System Theory......Page 251
10.2 Analysis of LTI Systems......Page 261
10.3 SISO System Controls......Page 271
10.4 Pole Placement of LTI Systems......Page 285
10.5 Course-Keeping Autopilots......Page 291
References......Page 299
Part B Autonomous Ocean Vehicles, Subsystems and Control......Page 301
11.1 Biorobotics......Page 304
11.2 Theoretical Foundation of Animal-Inspired Hydrodynamics and Control......Page 309
11.3 Description of Biology-Inspired Vehicles of Emergent Maturity......Page 312
11.5 Demonstrated Maneuverings of NUWC Bio-Inspired Vehicles......Page 319
11.6 Discussion......Page 320
11.8 Nomenclature......Page 321
References......Page 322
12.1 Concept......Page 324
12.2 Hydrodynamics of Wings Versus Propellers......Page 328
12.3 Underwater Glider Attributes and Limitations......Page 329
12.4 Optimal Size and Shape for Horizontal Transport Efficiency......Page 331
12.5 Thermal Glider......Page 341
12.6 Discussion and Conclusions......Page 342
References......Page 343
13 Autonomous Sea Surface Vehicles......Page 345
13.1 Platforms......Page 346
13.2 Autonomous Maneuvering and Navigation......Page 348
13.3 Naval Architecture of AUSV Design......Page 349
13.4 Optimized Class of Autonomous Unmanned Surface Vehicles......Page 352
13.5 Conclusions......Page 359
References......Page 361
14 Autonomous Underwater Vehicle Navigation......Page 363
14.1 Sensors......Page 365
14.2 Algorithms......Page 368
14.3 Summary......Page 374
14.4 Conclusion......Page 375
References......Page 376
15 Acoustic Communication......Page 380
15.2 Current and Emerging Modem Applications......Page 381
15.3 Existing Technology......Page 382
15.4 Propagation Channel......Page 385
15.5 Point-to-Point Links:Signal Processing......Page 395
References......Page 404
16 Autonomous Underwater Vehicle Docking......Page 408
16.1 Technical Elements of Docking......Page 409
16.2 AUV Characteristics......Page 411
16.3 Sensors For Homing......Page 412
16.4 Capture and Connection Mechanisms......Page 416
16.5 Coupling Power and Communications......Page 420
16.6 AUV Control Considerations......Page 421
16.7 Conclusions and Future Prospects......Page 424
References......Page 425
17.1 Underwater Vehicles for Intervention Missions......Page 428
17.2 Dynamics of Underwater Vehicle Manipulators......Page 430
17.3 Teleoperation of Underwater Vehicle Manipulators......Page 431
17.4 Sensor-Based Manipulator Control......Page 432
17.5 Coordinated Motion Controlof Underwater Vehicle-Manipulator Systems......Page 434
17.6 Underwater AutonomousManipulation......Page 435
References......Page 440
18.1 Non-Acoustic Ocean Sensors: Sourcing and Classification......Page 444
18.2 Classical Non-Acoustic Ocean Sensors......Page 445
18.3 Chemical Sensor Systems......Page 447
18.4 Biological Sensor Systems......Page 450
18.5 Physical Sensor Systems......Page 453
18.7 AUV-Chemistry Sensors – Horizons......Page 456
18.10 Non-Acoustic Sensor Packaging......Page 457
References......Page 458
19.1 Motivation......Page 461
19.2 Background and History......Page 463
19.3 Advances in Cooperative Vehicle Ocean Monitoring......Page 465
19.4 Recent Developments and Future Directions......Page 472
References......Page 474
20 Nested Autonomy for Distributed Ocean Sensing......Page 479
20.1 Nested Autonomy......Page 480
20.2 Concept of Operations (CONOPS)......Page 481
20.3 Autonomy......Page 483
20.4 Acoustic Communication Infrastructure......Page 486
20.6 Application Examples......Page 487
References......Page 498
21 Science of Autonomy: Time-Optimal Path Planning and Adaptive Sampling for Swarms of Ocean Vehicles......Page 500
21.1 Time-Optimal Path Planning for Swarms of Ocean Vehicles......Page 501
21.2 Adaptive Sampling for Swarms of Ocean Vehicles......Page 508
21.3 Conclusions and Outlook......Page 513
References......Page 514
22.1 General Theoretical Framework......Page 517
22.2 Distributed Sensing, Control, and Decisions......Page 521
22.3 Multistatic Sonar......Page 523
22.4 Maritime Surveillance......Page 528
22.5 Effective Coordination Schemes......Page 529
22.6 Conclusions and Recommendations......Page 530
References......Page 531
23.1 COLREGS......Page 534
23.2 Sensing the World......Page 535
23.3 Proper Behaviors Yield Compliance......Page 536
23.4 Integrating UMVs into Public Water Space......Page 540
23.5 Developing Standards......Page 541
23.7 Conclusion......Page 542
References......Page 543
24 Autonomy: Risk Assessment......Page 544
24.1 Risk Management Process for Autonomous Ocean Vehicles......Page 545
24.2 Risk of Failure......Page 546
24.3 Risk of Collision......Page 549
24.4 Risk of Unavailability......Page 551
24.5 Risk of Loss......Page 552
24.6 Legal Risks......Page 558
References......Page 559
Part C Coastal Design......Page 562
25.1 Types of Coastal Hazards......Page 565
25.2 Coastal Impacts......Page 571
25.4 Nomenclature......Page 577
References......Page 578
26.1 Overview of Risk and Uncertainty......Page 582
26.2 Quantifying Coastal Hazards/Risks......Page 585
26.3 Historical Perspective......Page 589
26.A Appendix: Glossary of Probability and Risk Terms......Page 602
References......Page 608
27 Modeling of Coastal Waves and Hydrodynamics......Page 612
27.1 Wind Wave Modeling......Page 613
27.2 Modeling Long Waves......Page 619
27.3 Coupled and Nested Techniques......Page 620
27.4 Summary of Model Properties......Page 621
References......Page 623
28.1 Types of Coastal Models......Page 626
28.2 Principles of Process-Based Morphodynamic Modeling......Page 628
28.3 Modeling Approaches......Page 634
28.4 Future Directions......Page 644
References......Page 646
29 Beach Nourishment......Page 650
29.2 Methods of Delivery of Sand for Beach Nourishment......Page 651
29.3 Role of Structuresin Beach Nourishment......Page 654
29.4 Design and Prediction Approaches and Methods......Page 655
29.5 Additional Design Considerations......Page 658
29.6 Legacy Beach Nourishment Projects......Page 660
29.7 Other Beach Nourishment Projects......Page 663
29.8 Summary and Conclusions......Page 664
References......Page 665
30 Storm Hazard Mitigation Structures......Page 667
30.1 Design Criteria, Philosophy, and Constraints......Page 668
30.2 Coastal Armoring Structures......Page 672
30.3 Shoreline Stabilization Structures......Page 688
References......Page 695
31.1 Port and Harbor Layout and Design......Page 699
31.2 Structure Types......Page 706
31.3 Loads on Structures due to Vessel Mooring and Berthing......Page 717
31.4 Suggested Reading......Page 721
References......Page 723
32 Marine Outfalls......Page 725
32.1 Terminology......Page 726
32.2 Governance......Page 727
32.3 Predicting Near-Field Dilutions......Page 730
32.4 Hydraulic Analysis and Design......Page 737
32.5 Outfall Construction......Page 748
32.6 Environmental Monitoring......Page 750
References......Page 753
Part D Offshore Technologies......Page 755
33.1 Relevance......Page 758
33.2 Types of Offshore Platforms......Page 760
33.3 Future Trends and Developments in Offshore Platforms......Page 764
References......Page 765
34 Stability of Offshore Systems......Page 767
34.1 Stability Criteria......Page 768
34.2 Fundamentals......Page 769
34.3 Hydrostatic Forces and Moments......Page 773
34.4 Stability......Page 775
34.5 Loads......Page 788
34.6 Lightship Parameters......Page 791
34.7 Subdivision......Page 793
34.8 Analysis......Page 796
References......Page 797
35.1 Wave Loads......Page 798
35.2 Current Loads......Page 813
35.3 Wind Loads......Page 817
35.4 Model Tests......Page 821
35.6 Extreme Response Estimation......Page 825
References......Page 827
36 Vortex-Induced Vibrations......Page 830
36.1 VIV Prediction of Wide-Span Rigid Cylindersin Uniform Cross-Flow......Page 831
36.2 VIV Prediction of Flexible Structures in Nonuniform Flow......Page 842
36.3 Experimental Studies and Fatigue Analysis......Page 849
36.4 Effectiveness of Vortex Canceling Devices......Page 854
36.6 Effect of Reynolds Number......Page 856
References......Page 857
37 Structural Dynamics......Page 861
37.1 Single Degree-of-Freedom System......Page 862
37.2 Multi-Degree of Freedom Systems......Page 871
37.3 Linear Hydroelasticity for Inviscid Fluid Flow......Page 874
37.4 Linear Response to Random Seas......Page 877
37.5 Nonlinear Hydroelasticity(Nonlinear FSI)......Page 880
References......Page 883
38 Cable Dynamics for Marine Applications......Page 885
38.1 Mathematical Formulation......Page 886
38.2 The Eigenvalue Problem of a Catenary Mooring Cable......Page 892
38.3 High Tension Cables; Snap-Slack Conditions......Page 895
38.4 Dynamics of Catenary Moorings......Page 898
38.5 Second-Order Nonlinear Dynamics of Cables Formulated as Euler–Bernoulli Beams......Page 904
References......Page 913
39.1 Basic Models......Page 916
39.2 Mechanisms of Seabed Dynamics......Page 925
39.3 Wave(Current)-Induced Soil Response in Marine Sediments......Page 931
39.4 Seabed Stability Around Caisson Breakwaters......Page 934
39.5 Remarks......Page 940
References......Page 941
40.1 Buoy and Mooring Types and Design Considerations......Page 945
40.2 Buoy and Mooring SystemComponents......Page 950
40.3 Analysis Techniques......Page 957
40.4 Example Designs......Page 964
References......Page 969
41.1 Types of LNG Carriers......Page 971
41.2 Thermodynamics of LNG......Page 976
41.3 Environmental Challenges......Page 978
41.4 Fluid Structure Interaction of LNG Systems......Page 979
41.5 Design Methodologies of LNG Containment Systems......Page 986
References......Page 991
42 Salvage Operations......Page 992
42.1 The Casualty and Response......Page 993
42.2 Introduction to Salvage Engineering......Page 995
42.3 Data, Surveys, and Planning......Page 998
42.4 Types of Operations......Page 1003
42.A Appendix: Dewatering......Page 1010
42.B Appendix: Common Formulas, Calculations, and References......Page 1015
42.C Appendix: De-Beaching......Page 1035
42.D Appendix: Refloating......Page 1044
42.E Appendix: Wrecking in Place......Page 1062
References......Page 1072
43 Oil Spills and Response......Page 1073
43.1 Frequency of Oil Spills......Page 1074
43.3 Typical Oils and Their Properties......Page 1076
43.4 Behavior of Oil in the Environment......Page 1077
43.5 Analysis, Detection, and Remote Sensing of Oil Spills......Page 1081
43.6 Containment on Water......Page 1084
43.7 Oil Recovery on Water......Page 1086
43.8 Separation, Pumping, Decontamination, and Disposal......Page 1090
43.9 Spill-Treating Agents......Page 1092
43.10 In-Situ Burning......Page 1093
43.11 Shoreline Cleanup and Restoration......Page 1095
References......Page 1098
Part E Ocean Renewable Energy......Page 1100
44.1 Wave Energy Resource......Page 1103
44.2 Tidal and Ocean Current Energy Resource......Page 1105
44.3 Assessment of Global Ocean Current Resources......Page 1110
44.4 Other Considerations......Page 1117
References......Page 1118
45 Ocean Wave Energy Conversion Concepts......Page 1120
45.1 Basic Concepts in Primary Energy Capture......Page 1121
45.2 Power Takeoff Systems......Page 1130
45.A Appendix: Practical Applications of Wave Energy ConversionTechnologies......Page 1136
References......Page 1146
46 Ocean Current Energy Conversion......Page 1149
46.1 Fundamentals......Page 1150
46.2 The Betz Limit......Page 1151
46.3 Conversion Systems......Page 1153
46.4 Supporting Infrastructure......Page 1158
References......Page 1162
47 Harvesting Energy by Flow Included Motions......Page 1164
47.1 Hydrokinetic Energyin Horizontal Flow......Page 1167
47.2 Alternating-Lift Technologies: The VIVACE Converteras a Case Study......Page 1179
47.3 Methodology and Tools in Support of Development......Page 1203
47.4 Nomenclature......Page 1238
References......Page 1239
48.1 OTEC Principles and Systems......Page 1246
48.2 History of OTEC Installations Worldwide......Page 1251
48.3 Current Status of OTEC Technologies......Page 1255
48.4 Design Considerations for Future OTEC Plants......Page 1258
References......Page 1266
49 Offshore Wind Energy......Page 1268
49.1 Current Offshore Wind Turbine Technology......Page 1269
49.2 Fundamentals of Turbine Dynamics and the Offshore Environment......Page 1277
49.3 Outlook on Future Technology......Page 1284
References......Page 1285
Acknowledgements......Page 1287
About the Authors......Page 1289
Detailed Contents......Page 1302
Index......Page 1326