This Springer Handbook of Atomic, Molecular, and Optical Physics comprises a comprehensive reference source that unifies the entire fields of atomic, molecular, and optical (AMO) physics, assembling the principal ideas, techniques and results of the field from atomic spectroscopy to applications in comets. Its 92 chapters are written by over 100 authors, all leaders in their respective disciplines. Carefully edited to ensure uniform coverage and style, with extensive cross references, and acting as a guide to the primary research literature, it is both a source of information and an inspiration for graduate students and other researchers new to the field. Relevant diagrams, graphs, and tables of data are provided throughout the text. Substantially updated and expanded since the 1996 edition and published in conjunction with the 2005 World Year of Physics (commemorating Einstein’s 1905 "miracle year"), it contains several entirely new chapters covering current areas of great research interest, such as Bose – Einstein condensation, quantum information, and cosmological variations of the fundamental constants. A fully searchable CD-ROM version of the contents accompanies the handbook.
Author(s): Gordon W. F. Drake
Edition: 2nd
Publisher: Springer
Year: 2005
Language: English
Pages: 1506
Titel Pages......Page 1
Editorial Board......Page 5
Preface......Page 6
List of Authors......Page 9
Part Summaries......Page 19
Contents......Page 24
List of Tables......Page 44
List of Abbreviations......Page 51
1.1 Electromagnetic Units......Page 55
1.3.1 Series Summation Formula......Page 59
References......Page 60
A Mathematical Methods......Page 61
2 Angular Momentum Theory......Page 62
2.1.1 Cartesian Representation......Page 65
2.1.2 Spherical Polar Coordinate Representation......Page 68
2.2 Abstract Angular Momentum......Page 69
2.3.1 Parametrizations of the Groups SU(2) and SO(3,{R})......Page 71
2.3.2 Explicit Forms of Representation Functions......Page 73
2.3.4 Orthogonality Properties......Page 74
2.3.5 Recurrence Relations......Page 75
2.3.6 Symmetry Relations......Page 76
2.4 Group and Lie Algebra Actions......Page 78
2.4.4 Relation to Angular Momentum Theory......Page 79
2.5 Differential Operator Realizations of Angular Momentum......Page 81
2.6 The Symmetric Rotor and Representation Functions......Page 82
2.7 Wigner-Clebsch-Gordan and 3-j Coefficients......Page 84
2.7.1 Kronecker Product Reduction......Page 85
2.7.3 Explicit Forms of WCG-Coefficients......Page 86
2.7.4 Symmetries of WCG-Coefficients in 3-j Symbol Form......Page 88
2.7.5 Recurrence Relations......Page 89
2.8.1 Conceptual Framework......Page 90
2.8.2 Universal Enveloping Algebra of {J}......Page 91
2.8.4 Wigner-Eckart Theorem......Page 92
2.8.5 Unit Tensor Operators or Wigner Operators......Page 93
2.9.2 Orthogonality and Explicit Form......Page 96
2.9.4 Schwinger-Bargmann Generating Function and its Combinatorics......Page 97
2.9.5 Symmetries of 6-j Coefficients......Page 98
2.9.6 Further Properties......Page 99
2.10.2 9-j Invariant Operators......Page 100
2.10.3 Basic Relations Between 9-j Coefficients and 6-j Coefficients......Page 101
2.10.5 Explicit Algebraic Form of 9-j Coefficients......Page 102
2.10.6 Racah Operators......Page 103
2.10.7 Schwinger-Wu Generating Function and its Combinatorics......Page 104
2.11 Tensor Spherical Harmonics......Page 105
2.11.3 Vector Solid Harmonics as Vector Functions......Page 106
2.12.1 Composite Angular Momentum Systems......Page 107
2.12.2 Binary Coupling Theory: Combinatorics......Page 109
2.12.3 Implementation of Binary Couplings......Page 110
2.12.4 Construction of all Transformation Coefficients in Binary Coupling Theory......Page 111
2.12.5 Unsolved Problems in Recoupling Theory......Page 112
2.13.1 SU(2) Solid Harmonics......Page 113
2.13.2 Combinatorial Definition of Wigner-Clebsch-Gordan Coefficients......Page 114
2.13.3 Magic Square Realization of the Addition of Two Angular Momenta......Page 116
2.13.4 MacMahon's and Schwinger's Master Theorems......Page 117
2.13.5 The Pfaffian and Double Pfaffian......Page 118
2.13.6 Generating Functions for Coupled Wave Functions and Recoupling Coefficients......Page 119
2.14 Tables......Page 122
References......Page 125
3.1.1 Group Elements......Page 128
3.2.2 The Semisimple Lie Algebras......Page 129
3.3.2 Dimensions......Page 130
3.4.2 {protect unhbox voidb@x hbox {U}}(n) supset {protect unhbox voidb@x hbox {SU}}(n)......Page 131
3.5.1 Outer Products of Tableaux......Page 132
3.6.1 Shell Structure......Page 133
3.6.3 Hydrogen and Hydrogen-Like Atoms......Page 134
3.7.3 Calculation of the Isoscalar Factors......Page 135
3.8 Checks......Page 136
References......Page 137
4.1 Noncompact Dynamical Groups......Page 139
4.1.2 Hydrogenic Realization of so(4,2)......Page 140
4.2.1 N-Dimensional Isotropic Harmonic Oscillator......Page 142
4.2.3 Perturbed Hydrogenic Systems......Page 143
4.3.1 Unitary Group and Its Representations......Page 144
4.3.2 Orthogonal Group O(n) and Its Representations......Page 145
4.3.4 Bosonic and Fermionic Realizations of U(n)......Page 146
4.3.5 Vibron Model......Page 147
4.3.6 Many-Electron Correlation Problem......Page 148
4.3.8 Spin-Dependent Operators......Page 149
References......Page 150
5.1.1 Basic Concepts......Page 153
5.1.3 General Formalism......Page 154
5.2.1 General Formulation......Page 155
5.2.3 Bracketing Theorem and RSPT......Page 156
5.3.2 Normal Product Form of PT......Page 157
5.3.3 Møller-Plesset and Epstein-Nesbet PT......Page 158
5.3.5 Vacuum and Wave Function Diagrams......Page 159
5.3.7 Linked and Connected Cluster Theorems......Page 160
5.3.8 Coupled Cluster Theory......Page 161
5.4.2 Gell-Mann and Low Formula......Page 163
5.4.5 Variation of Constants Method......Page 164
References......Page 165
6.1.2 Representation of States......Page 167
6.2.2 Coupled Forms......Page 168
6.3.1 Fermions......Page 169
6.3.4 Conjugation......Page 170
6.4.2 Matrix Elements......Page 171
6.5 Quasiparticles......Page 172
References......Page 173
7.1.1 Pure States......Page 174
7.1.4 The Liouville Equation......Page 175
7.2.1 Spin-Polarized Electrons......Page 176
7.3.2 Reduced Density Matrices......Page 177
7.4.2 Transformation Properties......Page 178
7.4.4 Orientation and Alignment......Page 179
7.5.2 Quantum Beats......Page 180
7.6.1 Generalized STU-parameters......Page 181
7.6.2 Radiation from Excited States: Stokes Parameters......Page 182
References......Page 184
8.1.1 Interpolation......Page 185
8.1.2 Fitting......Page 187
8.1.4 Approximating Integrals......Page 189
8.1.5 Approximating Derivatives......Page 190
8.2.1 Ordinary Differential Equations......Page 191
8.2.2 Differencing Algorithms for Partial Differential Equations......Page 193
8.2.4 Finite Elements......Page 194
8.2.5 Integral Equations......Page 196
8.3 Computational Linear Algebra......Page 198
8.4.1 Random Numbers......Page 199
8.4.2 Distributions of Random Numbers......Page 200
References......Page 201
9.1.1 Spherical Coordinates......Page 203
9.1.2 Parabolic Coordinates......Page 205
9.1.3 Momentum Space......Page 206
9.2 Dirac Equation......Page 207
9.3 The Coulomb Green's Function......Page 209
9.3.1 The Green's Function for the Schrödinger Equation......Page 210
9.3.2 The Green's Function for the Dirac Equation......Page 211
9.4.1 Confluent Hypergeometric Functions......Page 212
9.4.2 Laguerre Polynomials......Page 216
9.4.4 Legendre Functions......Page 219
References......Page 220
B Atoms......Page 222
10 Atomic Spectroscopy......Page 223
10.3 Hydrogen and Hydrogen-Like Ions......Page 224
10.6 Hierarchy of Atomic Structure in LS Coupling......Page 225
10.7.2 jj Coupling......Page 226
10.8.1 LS Coupling (Russell-Saunders Coupling)......Page 227
10.8.4 J_1l or J_1L_2 Coupling (J_1K Coupling)......Page 228
10.9 Eigenvector Composition of Levels......Page 229
10.10 Ground Levels and Ionization Energies for the Neutral Atoms......Page 230
10.11 Zeeman Effect......Page 231
10.12 Term Series, Quantum Defects, and Spectral-Line Series......Page 232
10.14 Spectral Wavelength Ranges, Dispersion of Air......Page 233
10.16.2 Absorption f Values......Page 234
10.16.4 Relationships Between A, f, and S......Page 235
10.16.6 Relative Strengths for Lines of Multiplets in LS Coupling......Page 241
10.18.2 Systematic Trends and Regularities in Atoms and Ions with Two or More Electrons......Page 242
10.19.2 Pressure Broadening......Page 243
10.20.2 Many-Electron Systems......Page 244
References......Page 245
11.1 The Three-Body Schrödinger Equation......Page 247
11.2.1 Variational Methods......Page 248
11.2.2 Construction of Basis Sets......Page 249
11.2.3 Calculation of Matrix Elements......Page 250
11.3.1 Expectation Values of Operators and Sum Rules......Page 253
11.4 Total Energies......Page 256
11.4.1 Quantum Defect Extrapolations......Page 259
11.4.2 Asymptotic Expansions......Page 261
11.5.1 Basic Formulation......Page 263
11.5.2 Oscillator Strength Table......Page 264
References......Page 266
12 Atomic Multipoles......Page 268
12.2 The Density Matrix in Liouville Space......Page 269
12.4 Interaction with Light......Page 271
12.5 Extensions......Page 272
References......Page 273
13.1.1 Nonrelativistic Theory......Page 274
13.2.1 Anomalous Zeeman Effect......Page 275
13.2.3 Paschen-Back Effect......Page 276
13.3 Atoms in Very Strong Magnetic Fields......Page 277
13.4.2 Linear Stark Effect......Page 278
13.4.3 Quadratic Stark Effect......Page 279
13.5 Recent Developments......Page 280
References......Page 281
14.1 Wave Functions and Quantum Defect Theory......Page 282
14.2 Optical Excitation and Radiative Lifetimes......Page 284
14.3 Electric Fields......Page 285
14.4 Magnetic Fields......Page 288
14.5 Microwave Fields......Page 289
14.6 Collisions......Page 290
14.7 Autoionizing Rydberg States......Page 291
References......Page 292
15 Rydberg Atoms in Strong Static Fields......Page 293
15.2 Closed-Orbit Theory......Page 294
15.3.1 Magnetic Field......Page 295
15.3.3 Crossed Electric and Magnetic Fields......Page 296
References......Page 297
16 Hyperfine Structure......Page 299
16.1.2 Energy Splittings......Page 300
16.1.3 Intensities......Page 301
16.2.2 Specific Mass Shift......Page 302
16.2.4 Separation of Mass Shift and Field Shift......Page 303
16.3.2 Magnetic Multipoles......Page 304
References......Page 305
17 Precision Oscillator Strength and Lifetime Measurements......Page 307
17.1.1 Absorption and Dispersion Measurements......Page 308
17.1.3 Combined Absorption, Emission and Lifetime Measurements......Page 309
17.2 Lifetimes......Page 310
17.2.2 Time-Resolved Decay Measurements......Page 311
17.2.4 Multiplexed Detection......Page 313
References......Page 314
18.1.1 Beam-Foil Spectroscopy......Page 315
18.1.2 Beam-Gas Spectroscopy......Page 316
18.1.3 Beam-Laser Spectroscopy......Page 317
18.2 Spectroscopy Using Ion Traps......Page 318
18.2.1 Electron Beam Ion Traps......Page 319
18.2.2 Heavy-Ion Storage Rings......Page 321
References......Page 323
19.1.1 Voigt Line Shape......Page 325
19.1.3 Classical Oscillator Approximation......Page 326
19.1.4 Impact Approximation......Page 327
19.1.5 Examples: Line Core......Page 328
19.1.7 Quasistatic Approximation......Page 330
19.1.8 Satellites......Page 331
19.1.10 Einstein A and B Coefficients......Page 332
19.2.1 Holstein-Biberman Theory......Page 333
19.2.2 Additional Factors......Page 335
19.2.3 Measurements......Page 336
References......Page 338
20 Thomas-Fermi and Other Density-Functional Theories......Page 340
20.1.1 Thomas-Fermi Theory......Page 341
20.1.2 Thomas-Fermi-von Weizsäcker Theory......Page 343
20.1.4 Thomas-Fermi-von Weizsäcker-Dirac Theory{}......Page 344
20.2 Nonrelativistic Energies of Heavy Atoms......Page 345
20.3.1 The Hohenberg-Kohn Theorem for the One-Electron Density......Page 346
20.3.2 The Kohn-Sham Method for Including Exchange and Correlation Corrections......Page 347
20.4 Recent Developments......Page 348
References......Page 349
21.1 Hamiltonians: Schrödinger and Breit-Pauli......Page 352
21.2 Wave Functions: LS and LSJ Coupling......Page 353
21.4 Hartree-Fock Theory......Page 354
21.4.3 Brillouin's Theorem......Page 356
21.4.4 Properties of Hartree-Fock Functions......Page 357
21.5.1 Z-Dependent Theory......Page 358
21.5.2 The MCHF Approximation......Page 359
21.5.3 Systematic Methods......Page 360
21.6 Configuration Interaction Methods......Page 361
21.7.1 Isotope Effects......Page 363
21.7.2 Hyperfine Effects......Page 364
21.7.3 Metastable States and Lifetimes......Page 365
21.7.5 Electron Affinities......Page 366
References......Page 367
22 Relativistic Atomic Structure......Page 369
22.1.3 Classification of Lorentz Transformations......Page 370
22.1.5 Poincaré Transformations......Page 371
22.2.2 The Charge-Current 4-Vector......Page 372
22.3.2 The Quantized Electron-Positron Field......Page 373
22.3.4 QED Perturbation Theory......Page 375
22.3.6 Effective Interaction of Electrons......Page 377
22.4 Many-Body Theory For Atoms......Page 378
22.4.3 Perturbation Theory: Nondegenerate Case......Page 379
22.4.4 Perturbation Theory: Open-Shell Case......Page 380
22.5.1 Eigenstates of Angular Momentum......Page 381
22.5.2 Eigenstates of Dirac Hamiltonian in Spherical Coordinates......Page 382
22.5.3 Radial Amplitudes......Page 384
22.5.4 Square Integrable Solutions......Page 385
22.5.5 Hydrogenic Solutions......Page 386
22.5.6 The Free Electron Problem in Spherical Coordinates......Page 387
22.6.1 Finite Differences......Page 388
22.6.2 Expansion Methods......Page 389
22.6.3 Catalogue of Basis Sets for Atomic Calculations......Page 391
22.7.4 CSF Expansion......Page 394
22.7.6 Dirac-Hartree-Fock and Other Theories......Page 395
22.7.8 Radiative Processes......Page 397
22.8.2 Software for Relativistic Atomic Structure and Properties......Page 398
References......Page 399
23 Many-Body Theory of Atomic Structure and Processes......Page 402
23.1.2 Construction Principles for Diagrams......Page 403
23.1.3 Correspondence Rules......Page 405
23.1.4 Higher-Order Corrections and Summation of Sequences......Page 406
23.2.1 Electron Correlations in Ground State Properties......Page 408
23.2.2 Characteristics of One-Particle States......Page 409
23.2.3 Electron Scattering......Page 410
23.2.4 Two-Electron and Two-Vacancy States......Page 412
23.2.5 Electron-Vacancy States......Page 413
23.2.6 Photoionization in RPAE and Beyond......Page 414
23.2.7 Photon Emission and Bremsstrahlung......Page 417
23.3 Concluding Remarks......Page 418
References......Page 419
24.1.1 The Interaction Hamiltonian......Page 421
24.1.2 Alternative Forms for the Transition Matrix Element......Page 422
24.1.4 Boundary Conditions on the Final State Wave Function......Page 423
24.2 An Independent Electron Model......Page 424
24.2.3 Near Threshold Behavior......Page 425
24.3.1 Intrachannel Interactions......Page 426
24.3.4 Photoionization of {Ar}......Page 427
24.4.1 Calculational Methods......Page 428
24.5 Recent Developments......Page 429
References......Page 430
25.1.3 Formation, Scattering, and Resonances......Page 433
25.2.2 Expansion of V_{protect unhbox voidb@x hbox {op}}: The QHQ Problem......Page 434
25.3.1 The Feshbach Form......Page 435
25.4.1 Width and Shift......Page 436
25.4.2 Shape Parameter......Page 437
25.5.1 Complex Rotation Method......Page 438
25.5.2 Pseudopotential Method......Page 439
25.6 Related Topics......Page 440
References......Page 441
26 Green's Functions of Field Theory......Page 442
26.1 The Two-Point Green's Function......Page 443
26.2 The Four-Point Green's Function......Page 446
26.3 Radiative Transitions......Page 447
26.4 Radiative Corrections......Page 449
References......Page 452
27.1 Covariant Perturbation Theory......Page 454
27.2 Renormalization Theory and Gauge Choices......Page 455
27.4 Electron and Muon g Factors......Page 457
27.5 Recoil Corrections......Page 459
27.6 Fine Structure......Page 461
27.7.1 Muonium Hyperfine Splitting......Page 462
27.8 Orthopositronium Decay Rate......Page 463
27.9 Precision Tests of QED in Neutral Helium......Page 464
27.10 QED in Highly Charged One-Electron Ions......Page 465
27.11 QED in Highly Charged Many-Electron Ions......Page 466
References......Page 468
28.1 Electron g-Factor Anomaly......Page 470
28.2 Electron g-Factor in ^{12}C^{5+} and ^{16}{O}^{7+}......Page 473
28.3 Hydrogen and Deuterium Atoms......Page 478
28.3.2 Relativistic Recoil......Page 479
28.3.4 Self Energy......Page 480
28.3.5 Vacuum Polarization......Page 481
28.3.6 Two-Photon Corrections......Page 482
28.3.7 Three-Photon Corrections......Page 483
28.3.8 Finite Nuclear Size......Page 484
28.3.12 Total Energy and Uncertainty......Page 485
References......Page 486
29 Parity Nonconserving Effects in Atoms......Page 489
29.1 The Standard Model......Page 490
29.3 Many-Body Perturbation Theory......Page 491
29.4 PNC Calculations......Page 492
29.6 Comparison with Experiment......Page 493
References......Page 494
30 Atomic Clocks and Constraints on Variations of Fundamental Constants......Page 495
30.1.1 Caesium Atomic Fountain......Page 496
30.1.3 Laser-Cooled Neutral Atoms......Page 497
30.1.6 Limitations on Frequency Variations......Page 498
30.2.2 Hyperfine Structureand the Schmidt Model......Page 499
30.3 Laboratory Constraints on Time the Variations of the Fundamental Constants......Page 500
30.3.2 Constraints from Microwave Clocks......Page 501
References......Page 502
C Molecules......Page 504
31 Molecular Structure......Page 505
31.1.1 Nonadiabatic Ansatz: Born-Oppenheimer Approximation......Page 506
31.1.3 Classification of Interstate Couplings: Adiabatic and Diabatic Bases......Page 507
31.2 Characterization of Potential Energy Surfaces......Page 508
31.2.1 The Self-Consistent Field (SCF) Method......Page 509
31.2.2 Electron Correlation: Wave Function Based Methods......Page 510
31.2.3 Electron Correlation: Density Functional Theory......Page 513
31.3.1 Derivative Couplings......Page 514
31.3.2 Breit-Pauli Interactions......Page 516
31.3.3 Surfaces of Intersection......Page 517
31.4.1 General Considerations......Page 518
31.4.2 Rotational-Vibrational Structure......Page 519
31.4.3 Coupling of Electronic and Rotational Angular Momentum in Weakly Interacting......Page 520
31.4.4 Reaction Path......Page 521
31.5 Reaction Mechanisms: A Spin-Forbidden Chemical Reaction......Page 522
References......Page 524
32.1 Dynamics and Spectra of Molecular Rotors......Page 528
32.1.2 Molecular States Inside and Out......Page 529
32.1.3 Rigid Asymmetric Rotor Eigensolutions and Dynamics......Page 530
32.2 Rotational Energy Surfaces and Semiclassical Rotational Dynamics......Page 531
32.3.1 Asymmetric Rotor Symmetry Analysis......Page 535
32.4 Tetrahedral-Octahedral Rotational Dynamics and Spectra......Page 536
32.4.3 Octahedral and Tetrahedral Rotational Fine Structure......Page 537
32.4.4 Octahedral Superfine Structure......Page 539
32.5 High Resolution Rovibrational Structure......Page 540
32.5.2 Superhyperfine Structure and Spontaneous Symmetry Breaking......Page 542
32.5.3 Extreme Molecular Symmetry Effects......Page 543
32.6 Composite Rotors and Multiple RES......Page 544
32.6.1 3D-Rotor and 2D-Oscillator Analogy......Page 546
32.6.2 Gyro-Rotors and 2D-Local Mode Analogy......Page 547
32.6.3 Multiple Gyro-Rotor RES and Eigensurfaces......Page 548
References......Page 549
33.1.1 Intensity versus Line-Position Spectroscopy......Page 552
33.2.1 Symmetries of the Exact Wave Function......Page 553
33.2.3 Transformation of Ordinary Objects into the Rotating Frame......Page 554
33.3.1 States, Levels, and Components......Page 555
33.3.2 The Basis Set and Matrix Hamiltonian......Page 556
33.3.5 Fitting Experimental Intensities......Page 557
33.4.2 Rotational Branches and Parity......Page 558
33.4.3 Nuclear Spin, Spatial Symmetry, and Statistics......Page 559
33.4.4 Electron Orbital and Spin Angular Momenta......Page 560
33.5.2 Transition Moments......Page 561
33.6.1 Franck-Condon Factors......Page 562
33.7.1 Branch Structure and Transition Type......Page 563
33.7.2 Hönl-London Factors......Page 564
33.7.4 Hund's Cases......Page 565
33.8.1 Spin-Changing Transitions......Page 567
33.9 Recent Developments......Page 568
References......Page 569
34 Molecular Photodissociation......Page 571
34.1.1 Scalar Properties......Page 573
34.1.2 Vector Correlations......Page 574
34.2 Experimental Techniques......Page 575
34.3 Theoretical Techniques......Page 576
34.4.1 Direct Dissociation......Page 577
34.4.3 Electronic Predissociation......Page 578
34.5 Recent Developments......Page 579
34.6 Summary......Page 580
References......Page 581
35 Time-Resolved Molecular Dynamics......Page 583
35.2 Theoretical Description......Page 584
35.3.2 Elementary Gas-Phase Chemical Reactions......Page 586
35.4.3 Time-Resolved Diffraction......Page 587
References......Page 588
36.1 Definitions......Page 590
36.3 Quantal Method......Page 591
36.5 Coordinate Systems......Page 592
36.7.1 Centrifugal Potential......Page 593
36.7.2 Interaction Potential......Page 594
References......Page 595
37 Gas Phase Reactions......Page 596
37.1.1 Capture Theories......Page 598
37.1.2 Phase Space Theories......Page 600
37.1.3 Short-Range Barriers......Page 601
37.1.4 Complexes Followed by Barriers......Page 603
37.1.5 The Role of Tunneling......Page 604
37.2.1 Radiative Stabilization......Page 605
37.2.2 Complex Formation and Dissociation......Page 606
37.3 Concluding Remarks......Page 607
References......Page 608
38.1 Overview......Page 610
38.2 Reaction Energetics......Page 611
38.4 Reaction Processes......Page 613
38.4.1 Binary Ion-Neutral Reactions......Page 614
38.4.2 Ternary Ion-Molecule Reactions......Page 616
38.5 Electron Attachment......Page 617
38.6.1 Electron-Ion Recombination......Page 618
38.6.2 Ion-Ion Recombination (Mutual Neutralization)......Page 619
References......Page 620
39 Clusters......Page 623
39.1.2 Electronic and Magnetic Properties......Page 624
39.1.3 Chemical Properties......Page 626
39.2 Carbon Clusters......Page 627
39.2.2 Fullerenes......Page 628
39.2.3 Giant Carbon Clusters: Tubes, Capsules, Onions, Russian Dolls, Papier Mâchékern 1pt.........Page 629
39.3.2 Electronic and Chemical Properties......Page 630
39.4.1 Silicon and Germanium Clusters......Page 631
39.4.2 Group III-V and Group II-VI Semiconductor Clusters......Page 632
39.5.1 Geometric Structures......Page 633
39.5.3 Doped Noble Gas Clusters......Page 634
39.5.4 Helium Clusters......Page 635
39.6.2 Electronic Properties: Charge Solvation......Page 636
39.7 Recent Developments......Page 637
References......Page 638
40.1 Intensities of Infrared Radiation......Page 641
40.4 Simplified Principle of FTIR Spectroscopy......Page 642
40.4.2 Description of Wavefront Interference with Time Delay......Page 643
40.4.3 The Operation of Spectrum Determination......Page 644
40.5 Optical Aspects of FTIR Technology......Page 645
40.6 The Scanning Michelson Interferometer......Page 646
References......Page 647
41 Laser Spectroscopy in the Submillimeter and Far-Infrared Regions......Page 648
41.1 Experimental Techniques using Coherent SM-FIR Radiation......Page 649
41.1.1 Tunable FIR Spectroscopy with {CO_2} Laser Difference Generation in a MIM Diode......Page 650
41.1.2 Laser Magnetic Resonance......Page 651
41.1.3 TuFIR and LMR Detectors......Page 652
41.3 Upper Atmospheric Studies......Page 653
References......Page 654
42.1.3 Gain......Page 656
42.1.4 Laser Light......Page 657
42.2.1 Cavities......Page 658
42.2.2 Pumping......Page 659
42.3.2 Multiphoton Absorption......Page 661
42.3.5 Nonlinear Optics......Page 662
42.4 Recent Developments......Page 663
References......Page 664
43.1 Limitations of Traditional Absorption Spectrometers......Page 665
43.2.1 Pulsed Cavity Ring-Down Spectroscopy......Page 666
43.2.2 Continuous-Wave Cavity Ring-Down Spectroscopy (CW-CRDS)......Page 667
43.3 Cavity Enhanced Spectroscopy......Page 668
43.3.1 Cavity Enhanced Transmission Spectroscopy (CETS)......Page 669
43.3.2 Locked Cavity Enhanced Transmission Spectroscopy (L-CETS)......Page 670
43.4 Extensions to Solids and Liquids......Page 671
References......Page 672
44 Spectroscopic Techniques: Ultraviolet......Page 673
44.1.1 Synchrotron Radiation......Page 674
44.1.2 Laser-Produced Plasmas......Page 675
44.1.4 Supercontinuum Radiation......Page 676
44.2 VUV Lasers......Page 677
44.3.1 Grating Spectrometers......Page 679
44.4 Detectors......Page 680
44.5 Optical Materials......Page 683
References......Page 684
D Scattering Theory......Page 689
45.1 Classical Scattering Formulae......Page 690
45.1.1 Deflection Functions......Page 691
45.1.2 Elastic Scattering Cross Section......Page 692
45.1.5 Orbiting and Spiraling Collisions......Page 693
45.1.6 Quantities Derived from Classical Scattering......Page 694
45.2.1 Basic Formulae......Page 695
45.2.2 Identical Particles: Symmetry Oscillations......Page 697
45.2.3 Partial Wave Expansion......Page 698
45.2.4 Scattering Length and Effective Range......Page 699
45.2.5 Logarithmic Derivatives......Page 701
45.2.7 Resonance Scattering......Page 702
45.2.9 Variable Phase Method......Page 704
45.2.10 General Amplitudes......Page 705
45.3.2 Semiclassical Procedure......Page 706
45.3.3 Semiclassical Amplitudes: Integral Representation......Page 707
45.3.4 Semiclassical Amplitudes and Cross Sections......Page 708
45.3.5 Diffraction and Glory Amplitudes......Page 710
45.3.6 Small-Angle (Diffraction) Scattering......Page 711
45.3.7 Small-Angle (Glory) Scattering......Page 712
45.4.1 Quantal Elastic, Absorption and Total Cross Sections......Page 714
45.5 Results for Model Potentials......Page 715
References......Page 720
46 Orientation and Alignment in Atomic and Molecular Collisions......Page 723
46.1.1 The Fully Coherent Case......Page 724
46.1.3 The Incoherent Case without Conservation of Atomic Reflection Symmetry......Page 727
46.2.2 The Incoherent Case with Conservation of Atomic Reflection Symmetry......Page 729
46.2.3 The Incoherent Case without Conservation of Atomic Reflection Symmetry......Page 730
46.3.1 The First Born Approximation......Page 732
References......Page 733
47.1.1 Low-Energy Elastic Scattering and Excitation......Page 735
47.1.2 Relativistic Effects for Heavy Atoms and Ions......Page 738
47.1.3 Multichannel Resonance Theory......Page 740
47.1.4 Multichannel Quantum Defect Theory......Page 741
47.1.5 Solution of the Coupled Integrodifferential Equations......Page 742
47.1.6 Intermediate and High Energy Elastic Scattering and Excitation......Page 744
47.1.7 Ionization......Page 747
47.2.1 Laboratory Frame Representation......Page 750
47.2.2 Molecular Frame Representation......Page 751
47.2.3 Inclusion of the Nuclear Motion......Page 752
47.3 Electron-Atom Collisions in a Laser Field......Page 753
47.3.1 Potential Scattering......Page 754
47.3.2 Scattering by Complex Atoms and Ions......Page 755
References......Page 757
48.1.1 Postronium Formation......Page 760
48.1.2 Annihilation......Page 761
48.2 Theoretical Methods......Page 762
48.3.2 Noble Gases......Page 764
48.3.3 Other Atoms......Page 765
48.4 Binding of Positrons to Atoms......Page 766
References......Page 767
49.1.1 Slow Quasiclassical Collisions......Page 770
49.1.3 Nonadiabatic Transitions: The Massey Parameter......Page 771
49.2.1 Relation Between Adiabatic and Diabatic Basis Functions......Page 772
49.2.2 Coupled Equations and Transition Probabilities in the Common Trajectory Approximation......Page 773
49.2.3 Selection Rules for Nonadiabatic Coupling......Page 774
49.3.1 Crossing and Narrow Avoided Crossing of Potential Energy Curves: The Landau-Zener Model in the Common Trajectory Approximation......Page 775
49.3.2 Arbitrary Avoided Crossing and Diverging Potential Energy Curves: The Nikitin Model in the Common Trajectory Approximation......Page 776
49.3.3 Beyond the Common Trajectory Approximation......Page 777
49.4.1 Mean Transition Probability and the Stückelberg Phase......Page 778
49.4.2 Approximate Formulae for the Transition Probabilities......Page 779
49.5.1 Multiple Passage in Atomic Collisions......Page 780
References......Page 781
50 Ion-Atom and Atom-Atom Collisions......Page 782
50.1 Treatment of Heavy Particle Motion......Page 783
50.2 Independent-Particle Models Versus Many-Electron Treatments......Page 784
50.3 Analytical Approximations Versus Numerical Calculations......Page 785
50.3.1 Single-Centered Expansion......Page 786
50.4 Description of the Ionization Continuum......Page 787
References......Page 788
51 Ion-Atom Charge Transfer Reactions at Low Energies......Page 790
51.1.1 Ab Initio Methods......Page 791
51.1.2 Model Potential Methods......Page 792
51.1.3 Empirical Estimates......Page 793
51.2 Dynamics of the Collision......Page 794
51.3 Radial and Rotational Coupling Matrix Elements......Page 795
51.4 Total Electron Capture Cross Sections......Page 796
51.6 Differential Cross Sections......Page 798
51.7 Orientation Effects......Page 799
References......Page 801
52.1.1 Perturbation Theory......Page 803
52.1.3 Variational CDW......Page 806
52.1.4 Ionization......Page 807
52.2.1 The Wannier Threshold Law......Page 809
52.2.2 Peterkop's Semiclassical Theory......Page 810
52.2.3 The Quantal Semiclassical Approximation......Page 811
References......Page 814
53.1 Born Approximation......Page 816
53.2.1 Target Electrons......Page 819
References......Page 823
54 Electron-Ion and Ion-Ion Recombination......Page 825
54.1.3 Balances......Page 826
54.2 Collisional-Radiative Recombination......Page 827
54.2.4 Working Rate Formulae......Page 828
54.3.1 Resonant Capture-Stabilization Model: Dissociative and Dielectronic Recombination......Page 829
54.3.2 Reactive Sphere Model: Three-Body Electron-Ion and Ion-Ion Recombination......Page 830
54.3.3 Working Formulae for Three-Body Collisional Recombination at Low Density......Page 831
54.3.4 Recombination Influenced by Diffusional Drift at High Gas Densities......Page 832
54.4.1 Curve-Crossing Mechanisms......Page 833
54.4.2 Quantal Cross Section......Page 834
54.5 Mutual Neutralization......Page 836
54.6 One-Way Microscopic Equilibrium Current, Flux, and Pair-Distributions......Page 837
54.7 Microscopic Methods for Termolecular Ion-Ion Recombination......Page 838
54.7.1 Time Dependent Method: Low Gas Density......Page 839
54.7.2 Time Independent Methods: Low Gas Density......Page 840
54.7.3 Recombination at Higher Gas Densities......Page 841
54.7.5 Recombination Rate......Page 842
54.8.1 Detailed Balance and Recombination-Ionization Cross Sections......Page 843
54.8.2 Kramers Cross Sections, Rates, Electron Energy-Loss Rates and Radiated Power for Hydrogenic Systems......Page 844
54.8.3 Basic Formulae for Quantal Cross Sections......Page 845
54.8.5 Radiative Recombination Rate......Page 848
54.8.7 Exact Universal Rate Scaling Law and Results for Hydrogenic Systems......Page 849
References......Page 850
55 Dielectronic Recombination......Page 854
55.1 Theoretical Formulation......Page 855
55.2.2 High-Z Ions and Relativistic Effects......Page 856
55.3 Radiative-Dielectronic Recombination Interference......Page 857
References......Page 858
56 Rydberg Collisions: Binary Encounter, Born and Impulse Approximations......Page 860
56.2.1 Dipole Moments......Page 861
56.2.3 Line Strengths......Page 862
56.2.4 Form Factors......Page 863
56.3.3 Heisenberg Correspondence Principle......Page 864
56.4.2 Momentum Distributions......Page 865
56.5 Classical Theory......Page 866
56.6.1 Inelastic n,{ell }-Changing Transitions......Page 867
56.6.2 Inelastic n
ightarrow n^{{kern z@ @prime }} Transitions......Page 868
56.6.5 Fine Structure n {ell } J
ightarrow n {ell } J^{{kern z@ @prime }} Transitions......Page 869
56.7.1 Quantal Impulse Approximation......Page 870
56.7.2 Classical Impulse Approximation......Page 874
56.7.3 Semiquantal Impulse Approximation......Page 876
56.8.1 Differential Cross Sections......Page 877
56.8.2 Integral Cross Sections......Page 878
56.8.3 Classical Ionization Cross Section......Page 880
56.9.2 Hydrogenic Form Factors......Page 881
56.9.3 Excitation Cross Sections......Page 883
56.9.5 Capture Cross Sections......Page 884
References......Page 885
57.1 The Classical Thomas Process......Page 887
57.2.2 Conservation of Overall Energy and Momentum......Page 888
57.2.4 Example: Proton-Helium Scattering......Page 889
57.4 Dispersion Relations......Page 890
57.6 Recent Developments......Page 891
References......Page 892
58.1.1 Hydrogenic Targets......Page 893
58.1.3 Multiply-Charged Projectiles and Many-Electron Targets......Page 894
58.3.1 Hydrogenic Atom Targets......Page 895
58.3.3 State-Selective Electron Capture......Page 896
58.3.5 Heavy Particle Dynamics......Page 897
References......Page 898
59.1 Impact Approximation......Page 899
59.2.1 Semiclassical Theory......Page 900
59.2.2 Simple Formulae......Page 901
59.2.3 Perturbation Theory......Page 902
59.2.5 Empirical Formulae......Page 903
59.3.1 Transitions in Hydrogen and Hydrogenic Ions......Page 904
59.4.1 Impact Approximation......Page 906
59.4.2 Broadening by Electrons......Page 907
59.4.3 Broadening by Atoms......Page 908
59.5.1 General Approach and Utility......Page 909
59.5.3 Broadening by Atoms......Page 910
References......Page 912
E Scattering Experiments......Page 913
60.1 Negative Ions......Page 914
60.2.2 Resonance Structure......Page 915
60.3.2 Interacting Beams......Page 916
60.3.3 Light Sources......Page 917
60.4.1 Threshold Measurements......Page 918
60.4.2 Resonance Parameters......Page 919
60.4.3 Lifetimes of Metastable Negative Ions......Page 920
References......Page 921
61.1.1 Differential Analysis......Page 923
61.1.2 Electron Correlation Effects......Page 926
61.2.1 Synchrotron Radiation Source......Page 929
61.2.2 Photoelectron Spectrometry......Page 930
61.2.3 Resolution and Natural Width......Page 932
61.3 Additional Considerations......Page 933
References......Page 934
62.1.1 Photon-Atom Processes......Page 936
62.2.1 Rayleigh Scattering......Page 937
62.2.2 Nuclear Scattering......Page 938
62.3.1 Photoionization......Page 939
62.4.1 Auger Transitions......Page 940
62.4.3 Widths and Fluorescence Yields......Page 942
62.4.6 Ultrashort Light Pulses......Page 943
62.5 Threshold Phenomena......Page 944
62.5.1 Raman Processes......Page 945
References......Page 946
63.1.1 Electron Impact Processes......Page 950
63.1.3 Scattering Measurements......Page 951
63.2.3 Momentum Transfer Cross Sections......Page 954
63.2.4 Excitation Cross Sections......Page 955
63.2.6 Ionization Cross Sections......Page 956
63.3 Coincidence and Superelastic Measurements......Page 957
63.4 Experiments with Polarized Electrons......Page 959
63.6 Electron Collisions in Traps......Page 960
References......Page 961
64.1 Low Energy Ion-Atom Collision Processes......Page 963
64.2.3 Crossed Ion and Thermal Beams Method......Page 965
64.2.5 Trapped Ion Method......Page 966
64.3.2 Translational Energy Spectroscopy......Page 967
References......Page 968
65.1.1 Perturbative Processes......Page 970
65.1.2 Nonperturbative Processes......Page 974
65.2 Multi-Electron Processes......Page 976
65.3.1 General Characteristics......Page 978
65.3.2 High Resolution Measurements......Page 979
65.4.2 Resonant Transfer and Excitation......Page 980
65.5.2 Positron Production from Atomic Processes......Page 981
References......Page 982
66.1.1 Molecular Beam Sources......Page 986
66.1.2 Reagent Preparation......Page 987
66.1.3 Detection of Neutral Products......Page 988
66.2.1 Crossed-Beam Rotatable Detector......Page 990
66.2.3 Product Imaging......Page 992
66.2.4 Laboratory to Center-of-Mass Transformation......Page 994
66.3.1 The Differential Cross Section......Page 995
66.3.3 Vibrationally Inelastic Scattering......Page 996
66.4.1 Harpoon and Stripping Reactions......Page 997
66.4.3 Long-lived Complexes......Page 998
References......Page 999
67 Ion-Molecule Reactions......Page 1002
67.2 Kinematic Analysis......Page 1004
67.3.1 State-to-State Differential Cross Sections......Page 1006
67.3.2 Velocity-Angle Differential Cross Sections......Page 1007
67.3.4 Product-State Resolved Total Cross Sections......Page 1008
67.3.5 State-to-State Total Cross Sections......Page 1009
67.4 New Directions: Complexity and Imaging......Page 1010
References......Page 1011
F Quantum Optics......Page 1013
68.1 Multipole Expansion......Page 1014
68.1.2 Electric Quadrupole (E2) Interaction......Page 1015
68.2.2 Index of Refraction......Page 1016
68.3 Two-Level Atoms......Page 1017
68.3.3 Rabi Frequency......Page 1018
68.3.4 Dressed States......Page 1019
68.4.1 Relaxation Toward Unobserved Levels......Page 1020
68.4.4 Density Matrix Equations......Page 1021
68.5.3 Einstein A and B Coefficients......Page 1022
68.6.3 Resonant Scattering......Page 1023
References......Page 1024
69.1 Index of Refraction......Page 1025
69.2 Density Matrix Treatment of the Two-Level Atom......Page 1026
69.3 Line Broadening......Page 1027
69.4 The Rate Equation Limit......Page 1029
69.5 Two-Level Doppler-Free Spectroscopy......Page 1031
69.6 Three-Level Spectroscopy......Page 1032
69.7 Special Effects in Three-Level Systems......Page 1034
References......Page 1036
70.1 Gain, Threshold, and Matter-Field Coupling......Page 1038
70.2 Continuous Wave, Single-Mode Operation......Page 1040
70.3 Laser Resonators......Page 1043
70.4 Photon Statistics......Page 1045
70.5 Multi-Mode and Pulsed Operation......Page 1046
70.7 Recent Developments......Page 1048
References......Page 1049
71 Types of Lasers......Page 1050
71.1.2 Ion Lasers......Page 1051
71.1.4 Molecular Lasers......Page 1052
71.1.5 Excimer Lasers......Page 1053
71.2 Solid State Lasers......Page 1054
71.2.2 Rare Earth Ion Lasers......Page 1055
71.2.3 Color Center Lasers......Page 1057
71.3 Semiconductor Lasers......Page 1058
71.4.1 Organic Dye Lasers......Page 1059
71.5.1 X-Ray and Extreme UV Lasers......Page 1060
71.6 Recent Developments......Page 1061
References......Page 1063
72.1 Nonlinear Susceptibility......Page 1065
72.1.2 Nonlinear Refractive Index......Page 1066
72.1.4 The Hyperpolarizability......Page 1067
72.2.2 Phase Matching......Page 1068
72.2.4 Pulse Propagation......Page 1069
72.3.5 Focused Beams......Page 1070
72.4.2 Self-Phase and Cross-Phase Modulation......Page 1071
72.4.6 Two-Photon Absorption......Page 1072
72.5.1 Stimulated Raman Scattering......Page 1073
72.5.2 Stimulated Brillouin Scattering......Page 1074
72.6.3 Photorefractive Effect......Page 1075
References......Page 1076
73.1 Optical Bloch Equations......Page 1078
73.3 Homogeneous Relaxation......Page 1079
73.3.3 Pi Pulses and Pulse Area......Page 1080
73.4.1 Free Induction Decay......Page 1081
73.5.1 Maxwell-Bloch Equations......Page 1082
73.5.3 The Area Theorem and Self-Induced Transparency......Page 1083
73.6.1 Rydberg Packets and Intrinsic Relaxation......Page 1084
73.6.2 Multiphoton Resonance and Two-Photon Bloch Equations......Page 1085
73.6.3 Pump-Probe Resonance and Dark States......Page 1086
73.7 Disentanglement and "Sudden Death" of Coherent Transients......Page 1087
References......Page 1089
74 Multiphoton and Strong-Field Processes......Page 1090
74.1.2 Resonant Enhanced Multiphoton Ionization......Page 1091
74.1.6 Effects of Field Fluctuations......Page 1092
74.2 Strong-Field Multiphoton Processes......Page 1093
74.2.4 Above Threshold Ionization......Page 1094
74.2.5 High Harmonic Generation......Page 1095
74.2.6 Stabilization of Atoms in Intense Laser Fields......Page 1096
74.2.8 Microwave Ionization of Rydberg Atoms......Page 1097
74.3.2 Direct Integration of the TDSE......Page 1099
74.3.5 Phase Space Averaging Method......Page 1100
References......Page 1101
75.1 Notation......Page 1103
75.2.1 General Theory......Page 1104
75.2.2 Two-State Atoms......Page 1106
75.2.3 Multistate Atoms......Page 1109
75.4.1 Paul Trap......Page 1111
75.4.2 Penning Trap......Page 1113
75.4.3 Collective Effects in Ion Clouds......Page 1114
75.5.1 Neutral Atoms......Page 1115
75.5.2 Trapped Particles......Page 1116
References......Page 1117
76.1 Elements of Quantum Field Theory......Page 1119
76.1.1 Bosons......Page 1120
76.1.3 Bosons versus Fermions......Page 1121
76.2.1 Bosons......Page 1122
76.2.2 Meaning of Macroscopic Wave Function......Page 1126
76.3.1 Preparing a BEC......Page 1127
76.4.1 Vortices......Page 1129
76.4.2 Superfluidity......Page 1130
76.5.1 Atom-Molecule Systems......Page 1131
76.5.2 Optical Lattice with a BEC......Page 1133
References......Page 1135
77.1 Overview......Page 1137
77.2 Hamiltonian of de Broglie Optics......Page 1138
77.2.5 Atoms......Page 1139
77.3.1 Light Optics Analogy......Page 1141
77.3.4 Paraxial Approximation......Page 1142
77.4.1 Atomic Mirrors......Page 1143
77.4.4 Atomic Waveguides......Page 1144
77.5.3 Near-Resonant Kapitza-Dirac Effect......Page 1145
77.5.4 Atom Beam Splitters......Page 1146
77.6.1 Interference Phase Shift......Page 1147
77.7.1 Atomic Sources......Page 1149
77.7.2 Atom Decoherence......Page 1150
References......Page 1151
78 Quantized Field Effects......Page 1153
78.2 Field States......Page 1154
78.2.2 Coherent States......Page 1155
78.2.3 Squeezed States......Page 1156
78.2.4 Phase States......Page 1157
78.3.1 Correlation Functions......Page 1158
78.4.1 Homodyne and Heterodyne Detection......Page 1159
78.5.1 s-Ordered Operators......Page 1160
78.5.3 The Wigner Function......Page 1161
78.6 Reservoir Theory......Page 1163
78.7 Master Equation......Page 1164
78.7.2 Damped Two-Level Atom......Page 1165
78.8.1 Damped Harmonic Oscillator......Page 1166
78.8.2 Damped Two-Level Atom......Page 1167
78.9.2 Two-Time Correlation Functions and Expectation Values......Page 1168
78.10.1 Quantum Langevin Equations......Page 1169
78.10.2 Stochastic Differential Equations......Page 1170
78.12 Spontaneous Emission in Free Space......Page 1171
78.13.2 Intensity of Emitted Light......Page 1172
78.13.3 Spectrum of the Fluorescence Light......Page 1173
78.14.3 Reservoir Theory......Page 1174
References......Page 1175
79.1.1 Atoms......Page 1178
79.1.2 Electromagnetic Fields......Page 1179
79.2.1 Radiating Atoms in Waveguides......Page 1180
79.2.3 Radiating Atoms in Resonators......Page 1181
79.2.4 Radiative Shifts and Forces......Page 1182
79.2.5 Experiments on Weak Coupling......Page 1183
79.3 Strong Coupling in Cavity QED......Page 1184
79.4.2 Strong Coupling in Open Optical Cavities......Page 1185
79.5.1 The Jaynes-Cummings Model......Page 1186
79.5.2 Fock States, Coherent States and Thermal States......Page 1187
79.5.3 Vacuum Splitting......Page 1188
79.6 Micromasers......Page 1189
79.6.3 Trapping States......Page 1190
79.7 Quantum Theory of Measurement......Page 1191
79.8.2 Generation of Entanglement......Page 1192
References......Page 1193
80 Quantum Optical Tests of the Foundations of Physics......Page 1196
80.2.1 Vacuum Fluctuations: Cavity QED......Page 1197
80.2.3 Squeezed States of Light......Page 1198
80.3.1 Single-Photon and Matter-Wave Interference......Page 1199
80.3.2 "Nonlocal" Interference Effects and Energy-Time Uncertainty......Page 1200
80.3.3 Two-Photon Interference......Page 1201
80.4.2 Quantum Eraser......Page 1202
80.4.4 Suppression of Spontaneous Down-Conversion......Page 1203
80.5.2 Quantum Nondemolition......Page 1204
80.5.3 Quantum Interrogation......Page 1205
80.6.1 Generalities......Page 1206
80.6.3 Nonpolarization Tests......Page 1207
80.6.4 Bell Inequality Loopholes......Page 1209
80.6.5 Nonlocality Without Inequalities......Page 1210
80.7.3 Teleportation......Page 1211
80.7.4 Quantum Cryptography......Page 1212
80.8.1 An Application of EPR Correlations to Time Measurements......Page 1213
80.8.3 Tunneling Delay in a Multilayer Dielectric Mirror......Page 1214
80.8.4 Interpretation of the Tunneling Time......Page 1215
80.8.5 Other Fast and Slow Light Schemes......Page 1216
80.9 Gravity and Quantum Optics......Page 1217
References......Page 1218
81 Quantum Information......Page 1225
81.1.1 Separability Criterion......Page 1226
81.1.2 Entanglement Measures......Page 1227
81.2 Simple Quantum Protocols......Page 1228
81.2.2 Quantum Teleportation......Page 1229
81.2.3 Dense Coding......Page 1230
81.3.2 Two-Qubit Operations......Page 1231
81.4.1 Deutsch-Jozsa Algorithm......Page 1232
81.5 Error Correction......Page 1233
81.6.3 Long Decoherence Times......Page 1234
81.7.1 Linear Optics......Page 1235
81.7.3 Cavity QED......Page 1236
81.8 Outlook......Page 1237
References......Page 1238
G Applications......Page 1242
82.1 Photoionized Gas......Page 1243
82.2 Collisionally Ionized Gas......Page 1245
82.3 Diffuse Molecular Clouds......Page 1246
82.4 Dark Molecular Clouds......Page 1247
82.5 Circumstellar Shells and Stellar Atmospheres......Page 1249
82.6 Supernova Ejecta......Page 1250
82.7 Shocked Gas......Page 1251
82.9 Recent Developments......Page 1252
References......Page 1253
83.1 Observations......Page 1255
83.2.1 Basic Phenomenology......Page 1258
83.2.3 Swings and Greenstein Effects......Page 1259
83.2.4 Bowen Fluorescence......Page 1260
83.2.6 Prompt Emission......Page 1261
83.3.1 Photolytic Processes......Page 1262
83.3.2 Density Models......Page 1263
83.4 Summary......Page 1264
References......Page 1265
84.1.1 Introduction......Page 1267
84.1.2 Atmospheric Regions......Page 1269
84.2.1 The Continuity Equation......Page 1272
84.3.1 Introduction......Page 1273
84.3.2 The Interaction of Solar Photons with Atmospheric Gases......Page 1275
84.3.3 Interaction of Energetic Electrons with Atmospheric Gases......Page 1276
84.4.2 Sources of Ionization......Page 1279
84.4.4 Ionospheric Density Profiles......Page 1285
84.4.5 Ion Diffusion......Page 1287
84.5 Neutral, Ion and Electron Temperatures......Page 1289
84.6 Luminosity......Page 1292
84.7 Planetary Escape......Page 1295
References......Page 1298
85.1.2 Structure of the Earth's Atmosphere......Page 1301
85.2 Atmospheric Models and Data Needs......Page 1302
85.3.1 Incoming and Outgoing Energy Fluxes......Page 1303
85.3.2 Tropospheric "Global" Warming......Page 1304
85.3.3 Upper Atmosphere Cooling......Page 1305
85.4.1 Production and Destruction......Page 1306
85.4.2 The Antarctic Ozone Hole......Page 1307
85.5 Atmospheric Measurements......Page 1308
References......Page 1309
86 Atoms in Dense Plasmas......Page 1311
86.1.1 Plasma Parameters......Page 1313
86.1.2 Quasi-Static Fields in Plasmas......Page 1314
86.1.3 Coulomb Logarithms and Collision Frequencies......Page 1315
86.2.1 Dilute Plasma Models......Page 1316
86.2.2 Dense Plasma "Chemical" Models......Page 1317
86.2.3 Dense Plasma "Physical" Models......Page 1318
86.3.1 Radiative Transitions and Opacity......Page 1319
86.3.2 Collisional Transitions......Page 1320
86.4.2 Molecular Dynamics......Page 1321
86.4.3 The Deuterium EOS Problem......Page 1323
References......Page 1324
87 Conduction of Electricity in Gases......Page 1327
87.1.1 Electron Scattering Experiments......Page 1328
87.1.3 The Boltzmann Equation......Page 1329
87.1.5 The Electron Drift Current......Page 1330
87.1.6 Cross Sections Derived from Swarm Data......Page 1334
87.2.1 Cold Cathode Discharges......Page 1335
87.3.1 Ionization......Page 1336
87.4 Electrical Discharge in Gases: Applications......Page 1338
87.4.2 Parallel Plate Reactors and RF Discharges......Page 1339
References......Page 1341
88 Applications to Combustion......Page 1343
88.1 Combustion Chemistry......Page 1344
88.2 Laser Combustion Diagnostics......Page 1345
88.2.1 Coherent Anti-Stokes Raman Scattering......Page 1346
88.2.2 Laser-Induced Fluorescence......Page 1347
88.2.3 Degenerate Four-Wave Mixing......Page 1349
References......Page 1350
89.1 Low Energy Electrons and Surface Science......Page 1351
89.2.1 Elastic Scattering: Low Energy Electron Diffraction (LEED)......Page 1352
89.2.2 Inelastic Scattering: Electron Energy Loss Spectroscopy......Page 1353
89.3.1 Ultraviolet Photoelectron Spectroscopy (UPS)......Page 1354
89.3.2 Inverse Photoemission Spectroscopy (IPES)......Page 1355
89.3.3 X-Ray Photoelectron Spectroscopy (XPS)......Page 1356
89.3.4 X-Ray Absorption Methods......Page 1357
89.4.1 Physisorption......Page 1359
89.5 Recent Developments......Page 1360
References......Page 1361
90 Interface with Nuclear Physics......Page 1363
90.1.1 Nuclear Size Effects on Nonrelativistic Energies......Page 1364
90.1.2 Nuclear Size Effects on Relativistic Energies......Page 1365
90.2.2 Electronic Effects on Tritium Beta Decay......Page 1366
90.3 Muon-Catalyzed Fusion......Page 1367
90.3.1 The Catalysis Cycle......Page 1369
90.3.2 Muon Atomic Capture......Page 1370
90.3.3 Muonic Atom Deexcitation and Transfer......Page 1371
90.3.4 Muonic Molecule Formation......Page 1372
90.3.5 Fusion......Page 1374
90.3.6 Sticking and Stripping......Page 1375
References......Page 1377
91 Charged-Particle-Matter Interactions......Page 1381
91.1.1 Energy Loss Experiments and Radiation Detectors......Page 1382
91.1.2 Inelastic Scattering Events......Page 1383
91.2.2 Binary Encounter Approximation......Page 1384
91.2.4 Fermi Virtual Photon Method......Page 1385
91.3.1 Total Collision Cross Section M_0......Page 1386
91.3.2 Stopping Power M_1......Page 1387
91.3.3 Second Moment M_2......Page 1388
91.4.1 Straggling Parameters......Page 1389
91.4.2 Analytic Methods for Calculating Energy Loss Straggling Function......Page 1391
91.6 Monte Carlo Calculations......Page 1392
References......Page 1393
92.1 General Overview......Page 1396
92.2.1 Two Classes of Problems of Radiation Physics......Page 1397
92.2.4 Neutrons......Page 1398
92.3.2 Degradation Spectra and Yields of Products......Page 1399
92.3.3 Quantities Expressing the Yields of Products......Page 1401
92.3.4 Track Structures......Page 1402
92.3.5 Condensed Matter Effects......Page 1403
92.5 Supplement......Page 1404
References......Page 1405
Acknowledgements......Page 1407
About the Authors......Page 1410
Detailed Contents......Page 1429
Subject Index......Page 1474