Spatial statistics and modeling

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Spatial statistics are useful in subjects as diverse as climatology, ecology, economics, environmental and earth sciences, epidemiology, image analysis and more. This book covers the best-known spatial models for three types of spatial data: geostatistical data (stationarity, intrinsic models, variograms, spatial regression and space-time models), areal data (Gibbs-Markov fields and spatial auto-regression) and point pattern data (Poisson, Cox, Gibbs and Markov point processes). The level is relatively advanced, and the presentation concise but complete.

The most important statistical methods and their asymptotic properties are described, including estimation in geostatistics, autocorrelation and second-order statistics, maximum likelihood methods, approximate inference using the pseudo-likelihood or Monte-Carlo simulations, statistics for point processes and Bayesian hierarchical models. A chapter is devoted to Markov Chain Monte Carlo simulation (Gibbs sampler, Metropolis-Hastings algorithms and exact simulation).
A large number of real examples are studied with R, and each chapter ends with a set of theoretical and applied exercises. While a foundation in probability and mathematical statistics is assumed, three appendices introduce some necessary background. The book is accessible to senior undergraduate students with a solid math background and Ph.D. students in statistics. Furthermore, experienced statisticians and researchers in the above-mentioned fields will find the book valuable as a mathematically sound reference.

This book is the English translation of Modélisation et Statistique Spatiales published by Springer in the series Mathématiques & Applications, a series established by Société de Mathématiques Appliquées et Industrielles (SMAI).

Carlo Gaetan is Associate Professor of Statistics in the Department of Statistics at the Ca' Foscari University of Venice.

Xavier Guyon is Professor Emeritus at the University of Paris 1 Panthéon-Sorbonne. He is author of a Springer monograph on random fields.

Author(s): Carlo Gaetan, Xavier Guyon (auth.)
Series: Springer Series in Statistics
Edition: 1
Publisher: Springer-Verlag New York
Year: 2010

Language: English
Pages: 302
Tags: Statistical Theory and Methods; Probability Theory and Stochastic Processes; Mathematical Applications in Earth Sciences; Econometrics; Math. Appl. in Environmental Science

Front Matter....Pages i-xiv
Second-order spatial models and geostatistics....Pages 1-52
Gibbs-Markov random fields on networks....Pages 53-80
Spatial point processes....Pages 81-109
Simulation of spatial models....Pages 111-148
Statistics for spatial models....Pages 149-248
Back Matter....Pages 1-46