Sparse Representation, Modeling and Learning in Visual Recognition: Theory, Algorithms and Applications

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This unique text/reference presents a comprehensive review of the state of the art in sparse representations, modeling and learning. The book examines both the theoretical foundations and details of algorithm implementation, highlighting the practical application of compressed sensing research in visual recognition and computer vision. Topics and features: describes sparse recovery approaches, robust and efficient sparse representation, and large-scale visual recognition; covers feature representation and learning, sparsity induced similarity, and sparse representation and learning-based classifiers; discusses low-rank matrix approximation, graphical models in compressed sensing, collaborative representation-based classification, and high-dimensional nonlinear learning; includes appendices outlining additional computer programming resources, and explaining the essential mathematics required to understand the book.

Author(s): Hong Cheng (auth.)
Series: Advances in Computer Vision and Pattern Recognition
Edition: 1
Publisher: Springer-Verlag London
Year: 2015

Language: English
Pages: 257
Tags: Pattern Recognition; Image Processing and Computer Vision; Artificial Intelligence (incl. Robotics)

Front Matter....Pages i-xiv
Front Matter....Pages 1-1
Introduction....Pages 3-19
The Fundamentals of Compressed Sensing....Pages 21-53
Front Matter....Pages 55-55
Sparse Recovery Approaches....Pages 57-90
Robust Sparse Representation, Modeling and Learning....Pages 91-115
Efficient Sparse Representation and Modeling....Pages 117-151
Front Matter....Pages 153-153
Feature Representation and Learning....Pages 155-181
Sparsity-Induced Similarity....Pages 183-200
Sparse Representation and Learning-Based Classifiers....Pages 201-211
Front Matter....Pages 213-213
Beyond Sparsity....Pages 215-235
Back Matter....Pages 237-257