Describes the latest research trends in compressed sensing, covering sparse representation, modeling and learning
Examines sensing applications in visual recognition, including sparsity induced similarity, and sparse coding-based classifying frameworks
Discusses in detail the theory and algorithms of compressed sensing
This unique text/reference presents a comprehensive review of the state of the art in sparse representations, modeling and learning. The book examines both the theoretical foundations and details of algorithm implementation, highlighting the practical application of compressed sensing research in visual recognition and computer vision. Topics and features: describes sparse recovery approaches, robust and efficient sparse representation, and large-scale visual recognition; covers feature representation and learning, sparsity induced similarity, and sparse representation and learning-based classifiers; discusses low-rank matrix approximation, graphical models in compressed sensing, collaborative representation-based classification, and high-dimensional nonlinear learning; includes appendices outlining additional computer programming resources, and explaining the essential mathematics required to understand the book.
Topics
Pattern Recognition
Image Processing and Computer Vision
Artificial Intelligence (incl. Robotics)
Author(s): Hong Cheng
Series: Advances in Computer Vision and Pattern Recognition
Edition: 2015
Publisher: Springer-Verlag London
Year: 2015
Language: English
Pages: C, xiv, 257
Tags: Pattern Recognition; Image Processing and Computer Vision; Artificial Intelligence (incl. Robotics)
Front Matter....Pages i-xiv
Front Matter....Pages 1-1
Introduction....Pages 3-19
The Fundamentals of Compressed Sensing....Pages 21-53
Front Matter....Pages 55-55
Sparse Recovery Approaches....Pages 57-90
Robust Sparse Representation, Modeling and Learning....Pages 91-115
Efficient Sparse Representation and Modeling....Pages 117-151
Front Matter....Pages 153-153
Feature Representation and Learning....Pages 155-181
Sparsity-Induced Similarity....Pages 183-200
Sparse Representation and Learning-Based Classifiers....Pages 201-211
Front Matter....Pages 213-213
Beyond Sparsity....Pages 215-235
Back Matter....Pages 237-257