Spark for Python Developers: A concise guide to implementing Spark Big Data analytics for Python developers, and building a real-time and insightful trend tracker data intensive app

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Looking for a cluster computing system that provides high-level APIs? Apache Spark is your answer—an open source, fast, and general purpose cluster computing system. Spark's multi-stage memory primitives provide performance up to 100 times faster than Hadoop, and it is also well-suited for machine learning algorithms. Are you a Python developer inclined to work with Spark engine? If so, this book will be your companion as you create data-intensive app using Spark as a processing engine, Python visualization libraries, and web frameworks such as Flask. To begin with, you will learn the most effective way to install the Python development environment powered by Spark, Blaze, and Bookeh. You will then find out how to connect with data stores such as MySQL, MongoDB, Cassandra, and Hadoop. You'll expand your skills throughout, getting familiarized with the various data sources (Github, Twitter, Meetup, and Blogs), their data structures, and solutions to effectively tackle complexities. You'll explore datasets using iPython Notebook and will discover how to optimize the data models and pipeline. Finally, you'll get to know how to create training datasets and train the machine learning models. By the end of the book, you will have created a real-time and insightful trend tracker data-intensive app with Spark.

Author(s): Amit Nandi
Publisher: Packt Publishing
Year: 2015

Language: English
Pages: 206
Tags: Библиотека;Компьютерная литература;Python;