Spacecraft power technologies

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This text is devoted to the technologies critical to the development of spacecraft electrical power systems. The science and engineering of solar, chemical and nuclear systems is examined together with the constraints imposed by the space and thermal environments in which the systems must operate. Details of technology and the history that led to the state-of-the-art are presented at a level appropriate for the student as a textbook or the practising engineer as a reference.

Author(s): Anthony K. Hyder, Ronald L. Wiley, G. Halpert, Donna Jones Flood, S. Sabripour
Series: Space technology 1
Publisher: Imperial College Press; Distributed by World Scientific
Year: 2000

Language: English
Pages: 498
City: London :, Singapore; River Edge, NJ

Front Matter......Page 1
Preface......Page 3
Acknowledgements......Page 5
Table of Contents......Page 0
Table of Contents......Page 6
1.1. The Beginnings......Page 12
1.1.1 The Increasing Demand for Spacecraft Electrical Power......Page 14
1.1.2 The Architecture of a Spacecraft......Page 16
1.2.1 An Overview of Electrical Power Systems......Page 18
1.2.2 Electrical Power System Designs......Page 21
1.2.3 Examples of Missions and Their Electrical Power Systems......Page 23
1.2.4 Spacecraft Electrical Power Technologies......Page 28
1.2.5 An Overview of the Book......Page 29
1.3. References......Page 31
2.1. Introduction......Page 33
2.2. Orbital Considerations......Page 35
2.2.1 Orbital Elements......Page 37
2.2.2 Eclipse Times......Page 39
2.3.1 The Neutral Environment......Page 43
2.3.2 The Plasma Environment......Page 51
2.3.3 The Radiation Environment......Page 56
2.3.4 The Particulate Environment......Page 72
2.4. References......Page 76
3.1. Introduction......Page 80
3.1.1 Space Photovoltaic Power Systems......Page 81
3.1.2 Space Power System Applications and Requirements......Page 82
3.1.3 Space Solar Cell and Array Technology Drivers......Page 83
3.2.1 Introduction......Page 84
3.2.2 Basic Theory......Page 86
3.3. Space Solar Cell Calibration and Performance Measurements......Page 89
3.3.1 Calibration Techniques......Page 90
3.3.2 Laboratory Measurement Techniques......Page 93
3.4. Silicon Space Solar Cells......Page 97
3.4.1 Advanced Silicon Solar Cells......Page 98
3.4.2 Radiation Damage in Silicon Solar Cells......Page 99
3.5. III-V Compound Semiconductor Solar Cells......Page 105
3.5.1 Single Junction Cells......Page 106
3.5.2 Multiple Junction Cells......Page 118
3.6. Thin Film Solar Cells......Page 127
3.7. Space Solar Cell Arrays......Page 130
3.7.2 Rigid Panel Planar Solar Arrays......Page 131
3.7.3 Flexible, Flat Panel Arrays......Page 133
3.7.4 Concentrator Arrays......Page 137
3.7.5 Array Environmental Interactions......Page 140
3.7.6 Power System Design and Array Sizing......Page 147
3.8. Space Thermophotovoltaic Power Systems......Page 151
3.8.1 TPV System Efficiency......Page 152
3.8.2 Solar Thermophotovoltaic Space Power Systems......Page 155
3.9. Conclusion......Page 158
3.10. References......Page 160
4.1. Introduction......Page 168
4.2. Inventions......Page 169
4.3. Evolution of Batteries in Space......Page 170
4.4. Fundamentals of Electrochemistry......Page 174
4.4.1 Standard Electrode Potential and Free Energy......Page 175
4.4.2 The Nernst Equation......Page 176
4.5.1 Cell Design......Page 177
4.5.2 Battery Design......Page 181
4.6. Performance Metrics......Page 182
4.6.1 Voltage......Page 183
4.6.2 Capacity and Energy......Page 185
4.6.3 Specific Energy and Energy Density......Page 186
4.6.4 Life and Performance Limitations......Page 187
4.6.5 Charge Control......Page 191
4.6.6 Efficiency and Thermal Properties......Page 192
4.7.1 Primary Cells......Page 196
4.7.2 Rechargeable Cells and Batteries......Page 215
4.8. Fuel Cell Systems......Page 236
4.8.1 History......Page 237
4.8.2 Fuel Cell System Basics......Page 239
4.8.3 Alkaline Fuel Cells......Page 242
4.8.4 Proton Exchange Membrane Fuel Cells......Page 243
4.8.5 Regenerative Fuel Cells......Page 244
4.8.6 Direct Methanol Liquid-feed Fuel Cell/PEM......Page 245
4.9. Definitions and Terminology......Page 248
4.10. References......Page 252
5.1. Introduction......Page 253
5.2. History of the U.S. Space Nuclear Program......Page 254
5.2.1 Radioisotope Space Power Development......Page 256
5.2.2 Space Reactor Power Development......Page 262
5.2.3 The Future......Page 265
5.3. History of the Russian Space Nuclear Program......Page 267
5.4. Radioisotope Systems......Page 270
5.5. Reactors......Page 277
5.6. Safety......Page 286
5.6.1 U.S. Safety......Page 287
5.6.2 Russian Space Nuclear Safety Experience......Page 293
5.7. References......Page 295
6.1. Introduction......Page 300
6.2. Thermoelectrics......Page 301
6.3. Thermionics......Page 307
6.4. AMTEC......Page 320
6.5. Thermophotovoltaics......Page 324
6.6. References......Page 331
7.1. Introduction......Page 335
7.2. Stirling Cycle......Page 336
7.3. Closed Brayton Cycle......Page 344
7.4. Rankine Cycle......Page 352
7.5. References......Page 361
8.1.1 The Ideal Power System......Page 364
8.1.2 Power Subsystem Overview......Page 368
8.1.3 Electrical Power System Options......Page 372
8.2.1 Power Management and Control......Page 374
8.2.2 Power Distribution......Page 383
8.2.3 Fault Management and Telemetry......Page 385
8.2.4 Point-of-load DC-DC Converters......Page 386
8.3. Components and Packaging......Page 409
8.3.1 High-reliability Space-grade Parts......Page 410
8.4. System Examples......Page 416
8.4.1 The Lockheed Martin A2100......Page 417
8.4.3 The International Space Station......Page 419
8.4.4 The Modular Power System......Page 421
8.5. References......Page 424
9.1. Introduction......Page 426
9.1.1 Definition and Purpose of a TCS......Page 427
9.1.2 Characterization and Design of the Thermal Control Process......Page 428
9.2. The Thermal Environment......Page 432
9.2.1 Solar Radiation......Page 433
9.2.2 Planetary Radiation......Page 435
9.2.3 Spacecraft-generated Heat......Page 437
9.3.1 Heat Transfer by Conduction......Page 440
9.3.2 Heat Transfer by Radiation......Page 441
9.3.3 Absorptivity and Emissivity......Page 443
9.4. The Basics of Thermal Analysis......Page 446
9.5. Thermal Management Techniques......Page 448
9.5.1 Passive Thermal Management......Page 449
9.5.2 Active Thermal Management......Page 456
9.6. References......Page 460
Appendix: Magnetic Materials in Power Management......Page 463
B......Page 475
C......Page 477
E......Page 478
G......Page 482
K......Page 483
N......Page 484
O......Page 485
P......Page 486
R......Page 489
S......Page 490
T......Page 496
Y......Page 498