Space-Time Coding

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

The capacity of wireless data communications is lagging behind demands due to unsatisfactory performance of the existing wireless networks, such as low data rates, low spectral efficiency and low quality of service.Space-time coding is an effective transmit diversity technique to combat fading in wireless communications.Space-time codes are a highly bandwidth-efficient approach to signalling within wireless communication that takes advantage of the spatial dimension by transmitting a number of data streams using multiple co-located antennas. There are various approaches to the coding structures, including space-time trellis coded modulation, space-time turbo codes and also layered architectures. The central issue in all these various coding structures is the exploitation of multipath effects in order to achieve very high spectral efficiencies.The spectral efficiencies of traditional wireless systems range between 1-5bps/sec/Hz but by using space-time techniques spectral efficiencies of 20-40bps/sec/Hz have been possible. Hence, space-time coding enables an increase in capacity by an order of magnitude. This is the main reason why space-time codes have been included in the standards for the third generation wireless communication systems and ultimately why Space-time Coding will be in great demand by individuals within industry and academia.The comprehensive understanding of space-time coding is essential in the implementation of 3G, and as the only title currently available, Space-Time Coding will be the standard text for Researchers, telecommunication engineers and network planners, academics and undergraduate/postgraduate students, telecommunications managers and consultants.

Author(s): Branka Vucetic, Jinhong Yuan, Branka Vucetic
Publisher: Wiley
Year: 2003

Language: English
Pages: 332
City: West Sussex, England; Hoboken, NJ

TeamLiB......Page 1
Cover......Page 2
Contents......Page 7
List of Acronyms......Page 13
List of Figures......Page 15
List of Tables......Page 25
Preface......Page 27
Bibliography......Page 28
1.1 Introduction......Page 31
1.2 MIMO System Model......Page 32
1.3 MIMO System Capacity Derivation......Page 34
1.4 MIMO Channel Capacity Derivation for Adaptive Transmit Power Allocation......Page 38
1.5 MIMO Capacity Examples for Channels with Fixed Coefficients......Page 39
1.6 Capacity of MIMO Systems with Random Channel Coefficients......Page 43
1.6.1 Capacity of MIMO Fast and Block Rayleigh Fading Channels......Page 44
1.6.3 Capacity Examples for MIMO Slow Rayleigh Fading Channels......Page 52
1.7 Effect of System Parameters and Antenna Correlation on the Capacity of MIMO Channels......Page 55
1.7.1 Correlation Model for LOS MIMO Channels......Page 58
1.7.2 Correlation Model for a Rayleigh MIMO Fading Channel......Page 60
1.7.3 Correlation Model for a Rician MIMO Channel......Page 65
1.7.4 Keyhole Effect......Page 66
and Receive Scatterers......Page 69
1.7.6 The Effect of System Parameters on the Keyhole Propagation......Page 71
Appendix 1.1 Water- filling Principle......Page 74
Appendix 1.2: Cholesky Decomposition......Page 75
Bibliography......Page 76
2.1 Introduction......Page 79
2.2.3 Statistical Models for Fading Channels......Page 80
2.3.1 Diversity Techniques......Page 84
2.3.2 Diversity Combining Methods......Page 85
2.3.3 Transmit Diversity......Page 90
2.4 Space- Time Coded Systems......Page 94
2.5 Performance Analysis of Space- Time Codes......Page 95
2.5.1 Error Probability on Slow Fading Channels......Page 96
2.5.2 Error Probability on Fast Fading Channels......Page 102
2.6.1 Code Design Criteria for Slow Rayleigh Fading Channels......Page 105
2.6.2 Code Design Criteria for Fast Rayleigh Fading Channels......Page 108
2.6.3 Code Performance at Low to Medium SNR Ranges......Page 111
2.7 Exact Evaluation of Code Performance......Page 112
Bibliography......Page 116
3.2.1 Alamouti Space- Time Encoding......Page 121
3.2.2 Combining and Maximum Likelihood Decoding......Page 123
3.2.3 The Alamouti Scheme with Multiple Receive Antennas......Page 124
3.2.4 Performance of the Alamouti Scheme......Page 125
3.3.1 Space- Time Block Encoder......Page 129
3.4 STBC for Real Signal Constellations......Page 130
3.5 STBC for Complex Signal Constellations......Page 133
3.6 Decoding of STBC......Page 134
3.7 Performance of STBC......Page 138
3.8 Effect of Imperfect Channel Estimation on Performance......Page 142
3.9 Effect of Antenna Correlation on Performance......Page 143
Bibliography......Page 144
4.2 Encoder Structure for STTC......Page 147
4.2.1 Generator Description......Page 148
4.2.2 Generator Polynomial Description......Page 150
4.2.3 Example......Page 151
4.3 Design of Space- Time Trellis Codes on Slow Fading Channels......Page 152
4.3.1 Optimal STTC Based on the Rank & Determinant Criteria......Page 153
4.3.2 Optimal STTC Based on the Trace Criterion......Page 155
4.4.1 Performance of the Codes Based on the Rank & Determinant Criteria......Page 158
4.4.3 Performance Comparison for Codes Based on Different Design Criteria......Page 161
4.4.4 The Effect of the Number of Transmit Antennas on Code Performance......Page 165
4.4.5 The Effect of the Number of Receive Antennas on Code Performance......Page 168
4.5 Design of Space- Time Trellis Codes on Fast Fading Channels......Page 169
4.6 Performance Evaluation on Fast Fading Channels......Page 173
Bibliography......Page 177
5.1 Introduction......Page 179
5.1.1 Construction of Recursive STTC......Page 180
5.2 Performance of Recursive STTC......Page 182
5.3 Space- Time Turbo Trellis Codes......Page 183
5.4 Decoding Algorithm......Page 184
5.4.1 Decoder Convergence......Page 188
5.5 ST Turbo TC Performance......Page 190
5.5.2 Effect of Memory Order and Interleaver Size......Page 191
5.5.4 Effect of Component Code Design......Page 192
5.5.6 Effect of Interleaver Type......Page 196
5.5.7 Effect of Number of Transmit and Receive Antennas......Page 197
5.5.10 Performance on Fast Fading Channels......Page 200
Appendix 5.1 MAP Algorithm......Page 205
Summary of the MAP Algorithm......Page 211
Bibliography......Page 213
6.1 Introduction......Page 215
6.2 LST Transmitters......Page 216
6.3 LST Receivers......Page 219
6.3.1 QR Decomposition Interference Suppression Combined with Interference Cancellation......Page 221
6.3.2 Interference Minimum Mean Square Error ( MMSE) Suppression Combined with Interference Cancellation......Page 223
6.3.3 Iterative LST Receivers......Page 226
6.3.4 An Iterative Receiver with PIC......Page 227
6.3.5 An Iterative MMSE Receiver......Page 237
6.3.6 Comparison of the Iterative MMSE and the Iterative......Page 239
6.4 Comparison of Various LST Architectures......Page 241
6.4.1 Comparison of HLST Architectures with Various Component Codes......Page 243
Appendix 6.1 QR Decomposition......Page 246
Householder Transformation......Page 248
Bibliography......Page 249
7.1 Introduction......Page 253
7.2 Differential Coding for a Single Transmit Antenna......Page 254
7.3.1 Differential Encoding......Page 255
7.3.2 Differential Decoding......Page 258
7.3.3 Performance Simulation......Page 260
7.4.1 Differential Encoding......Page 262
7.4.2 Differential Decoding......Page 264
7.5.1 Differential Encoding......Page 267
7.5.2 Differential Decoding......Page 268
7.6 Unitary Space- Time Modulation......Page 269
7.7 Unitary Group Codes......Page 272
Bibliography......Page 274
8.2.1 Frequency- Selective Fading Channels......Page 275
8.2.2 Performance Analysis......Page 276
8.3.1 OFDM Technique......Page 279
8.3.2 STC- OFDM Systems......Page 281
8.4 Capacity of STC- OFDM Systems......Page 284
8.5 Performance Analysis of STC- OFDM Systems......Page 285
8.6.1 Performance on A Single- Path Fading Channel......Page 288
8.6.3 The Effect of Symbol- Wise Hamming Distance on Performance......Page 289
8.6.4 The Effect of The Number of Paths on Performance......Page 290
8.7.1 Concatenated RS- STC over OFDM Systems......Page 291
8.7.3 ST Turbo TC over OFDM Systems......Page 292
8.8.1 System Model......Page 294
8.8.2 Open- Loop Transmit Diversity for CDMA......Page 295
8.8.3 Closed- Loop Transmit Diversity for CDMA......Page 296
8.8.4 Time- Switched Orthogonal Transmit Diversity ( TS- OTD)......Page 297
8.8.5 Space- Time Spreading ( STS)......Page 299
8.8.6 STS for Three and Four Antennas......Page 300
8.9 Space- Time Coding for CDMA Systems......Page 303
8.10 Performance of STTC in CDMA Systems......Page 304
8.10.1 Space- Time Matched Filter Detector......Page 306
8.10.2 Space- Time MMSE Multiuser Detector......Page 308
8.10.3 Space- Time Iterative MMSE Detector......Page 311
8.10.4 Performance Simulations......Page 312
8.11 Performance of Layered STC in CDMA Systems......Page 316
Bibliography......Page 323
Index......Page 327