Source separation and machine learning

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Source Separation and Machine Learning presents the fundamentals in adaptive learning algorithms for Blind Source Separation (BSS) and emphasizes the importance of machine learning perspectives. It illustrates how BSS problems are tackled through adaptive learning algorithms and model-based approaches using the latest information on mixture signals to build a BSS model that is seen as a statistical model for a whole  Read more...

Abstract: Source Separation and Machine Learning presents the fundamentals in adaptive learning algorithms for Blind Source Separation (BSS) and emphasizes the importance of machine learning perspectives. It illustrates how BSS problems are tackled through adaptive learning algorithms and model-based approaches using the latest information on mixture signals to build a BSS model that is seen as a statistical model for a whole system. Looking at different models, including independent component analysis (ICA), nonnegative matrix factorization (NMF), nonnegative tensor factorization (NTF), and deep neural network (DNN), the book addresses how they have evolved to deal with multichannel and single-channel source separation

Author(s): Chien, Jen-Tzung
Publisher: Elsevier,Academic Press
Year: 2019

Language: English
Pages: 369
Tags: Blind source separation.;Machine learning.;TECHNOLOGY & ENGINEERING / Mechanical.

Content: Part I Fundamental Theories 1. Introduction 2. Model-based blind source separation 3. Adaptive learning machine Part II Advanced Studies 4. Independent component analysis 5. Nonnegative matrix factorization 6. Nonnegative tensor factorization 7. Deep neural network 8. Summary and Future Trends