Solution Properties of Polysaccharides

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Designed to increase understanding of DNA. Reveals the concept of gene splicing in a practical, entertaining way.

Content: pt. 1. The common thread --
pt. 2. The living library --
pt. 3. Editor-in-chief of the genetic code.
Abstract: Designed to increase understanding of DNA. Reveals the concept of gene splicing in a practical, entertaining way

Author(s): David A. Brant (Eds.)
Series: ACS Symposium Series 150
Publisher: American Chemical Society
Year: 1981

Language: English
Pages: 571
City: Washington

Title Page......Page 1
Half Title Page......Page 3
Copyright......Page 4
ACS Symposium Series......Page 5
FOREWORD......Page 6
PdftkEmptyString......Page 0
PREFACE......Page 7
1 Quasielastic Light-Scattering Studies of Xanthan in Solution......Page 9
Experimental......Page 10
Results and Discussion......Page 11
Effect of Concentration......Page 12
Thermal Transition......Page 16
Characterization of the Random Coil Conformation......Page 18
Literature Cited......Page 20
2 Is Xanthan a Wormlike Chain or a Rigid Rod?......Page 22
References......Page 30
The dependence of conformational transition on the pH.......Page 31
Structure of the solution and dependence on the molecular weight of Xanthan.......Page 34
Literature Cited......Page 36
Methods of Improving the Dispersibility of Gums......Page 37
Glyoxal Treatment of Polyhydroxyls (14-19)......Page 38
Factors Affecting Dispersibility and Hydration of Glyoxal-Treated Xanthan Gum......Page 40
Borate-Treated Xanthan Gum......Page 44
Literature Cited......Page 46
5 Cellulose Viscosity-Molecular-Weight Relationships by Gel Permeation Chromatography-Low-Angle Laser Light Scattering......Page 48
Instrumentation......Page 49
GPC/LALLS Methodology......Page 51
Results and Discussion......Page 53
LITERATURE CITED......Page 63
6 Properties of Cellulose Acetate in Solution Aggregation of Cellulose Triacetate in Dilute Solution1......Page 65
Experimental......Page 68
Results and Discussion......Page 69
Summary......Page 82
Literature Cited......Page 83
Structure and Properties of Pullulan......Page 85
Methods of Calculation......Page 86
Results and Discussion......Page 87
Conclusions......Page 100
Literature Cited......Page 102
8 Dilute Solution Properties of Streptococcus salivarius Levan and Its Hydrolysates......Page 104
Materials and Methods......Page 105
Discussion......Page 106
Literature Cited......Page 112
Fermentation Conditions......Page 114
Chemical Composition......Page 115
Native PS-60......Page 117
Deacetylated PS-60......Page 119
Clarified Deacetylated PS-60......Page 122
Literature Cited......Page 127
13C NMR CHARACTERISTICS OF GELS: CROSS-LINKED POLYMERS (24)......Page 128
GEL OF A LINEAR (1→3)-β-D-GLUCAN (CURDLAN)......Page 129
GELS OF BRANCHED (1→3)-β-D-GLUCANS (5,8,9)......Page 141
LITERATURE CITED......Page 148
11 Determination of Galactose-to-Galactose and Galactose-to-Mannose Structures in β-D-Galactofurano-α-D-Mannopyranans by C-13 NMR Spectroscopy......Page 151
Literature cited......Page 160
12 Structure and Conformation of the Capsular Polysaccharides of Group Β Streptococcus......Page 162
Literature Cited......Page 172
13 Light-Scattering Spectroscopy of Meningococcal Polysaccharides......Page 174
Experimental......Page 175
Analysis and Results......Page 179
Conclusions......Page 198
Literature Cited......Page 200
14 Structural Characterization of Proteoglycan Subunit from Nasal Septum by Laser Light Scattering......Page 201
Quasielastic Laser Light Scattering......Page 202
b) PGS in the Absence of Added Salt......Page 204
c) Interaction with Hyaluronate......Page 208
b) PGS in the Absence of Added Salt......Page 210
Précis......Page 211
Literature Cited......Page 212
Materials......Page 213
Methods......Page 215
Results......Page 217
Litereture cited......Page 226
16 Solution Properties of Hyaluronic Acid......Page 228
Theoretical......Page 230
Numerical......Page 232
Discussion......Page 236
Literature Cited......Page 246
17 Anticoagulant Activity, Anionic Density, and the Conformational Properties of Heparin......Page 250
Materials and Methods......Page 251
Results......Page 254
Discussion......Page 258
References......Page 262
18 Configurational Entropy of Tethered Polymers and the Swelling Properties of Connective Tissue......Page 264
REFERENCES......Page 273
Circular Dichroism of Uronic Acid Residues......Page 274
Circular Dichroism of Acetamido Sugar Residues......Page 277
Optical Activity of Glycosaminoglycans......Page 278
CD of Oligosaccharides of Hyaluronic Acid......Page 284
Literature Cited......Page 289
I. CD of Amide Chromophores in Carbohydrates......Page 292
III. Vicinal Diacyl Amino Sugars and Glycopeptides......Page 295
IV. Conformation of the Amide in Acetamido Sugars......Page 298
V. Theoretical Interpretation of the CD Spectra of Acetamido Sugars......Page 299
Literature Cited......Page 300
21 Vacuum UV Circular Dichroism of D-Glucans......Page 302
Experimental......Page 304
Discussion......Page 305
Acknowledgments......Page 312
Literature Cited......Page 313
22 Interactions of Group II Cations and Borate Anions with Nonionic Saccharides Studies on Model Polyols......Page 315
CONCLUSIONS......Page 327
LITERATURE CITED......Page 328
23 Polyelectrolytic Behavior of Ionic Polysaccharides......Page 329
I) Sulfated polysaccharides and heparin......Page 330
II) Natural carboxylated polysaccharides......Page 337
Experimental......Page 339
Literature Cited......Page 344
24 Interaction Between Metal Cations and Anionic Polysaccharides......Page 346
Experimental......Page 347
Results and Discussion......Page 348
Abstract......Page 357
Literature Cited......Page 361
25 Investigations on Aqueous Solution Properties of K-Carrageenans......Page 363
Conclusion......Page 372
Literature Cited......Page 374
Experimental......Page 375
Results and Discussion......Page 378
Literature cited......Page 382
27 Ion—Polyion Interactions in Chondroitin Sulfate Solutions......Page 383
Theoretical Background.......Page 384
Material and Method.......Page 385
Results.......Page 386
Conclusion......Page 395
Abstract......Page 397
Literature Cited.......Page 398
28 The Charge Fraction of Ionic Polysaccharides......Page 400
References and Notes......Page 408
I. Solution Properties of Oligodextran......Page 409
II. Solution Properties of Ionic Dextran Derivatives......Page 417
Acknowledgment......Page 430
Literature Cited......Page 431
30 Specificity of Interactions Between Polysaccharide Helices and β-1,4-Linked Polysaccharides......Page 433
Interaction with Galactomannans......Page 436
Interaction with Glucomannans......Page 442
Interaction with Glucans......Page 443
Interaction with Xylans......Page 445
Conclusions......Page 446
Literature Cited......Page 447
Experimental......Page 449
Results and Discussion......Page 450
Abstract......Page 467
Literature Cited......Page 468
Structure and Stoichiometry of the Complex......Page 470
Theoretical Model......Page 472
Experimental......Page 475
Results......Page 476
Abstract......Page 481
Literature Cited......Page 482
33 The Interaction of Sodium Dodecyl Sulfate, a Competing Ligand, with Iodine Complexes of Amylose and Amylopectin......Page 484
Materials and Methods......Page 486
Results and Discussion......Page 494
Literature cited......Page 502
34 Monte Carlo Calculations of the Debye Scattering Function and Diffusion Coefficient of Amylosic Chains......Page 505
The Debye Scattering Function......Page 506
The Translational Diffusion Coefficient......Page 507
Monte Carlo Averaging......Page 508
Amylosic Chain Models......Page 510
Results and Discussion......Page 512
Conclusions......Page 515
Literature Cited......Page 517
35 Properties of Aqueous Amylose and Amylose−Iodine Solutions1......Page 520
Studies with Amylose-Iodine Solutions......Page 522
Studies with Aqueous Amylose Solutions......Page 534
Conclusions......Page 535
Literature Cited......Page 537
36 Initial Rapid Processes in Retrogradation of Amylose Observed by the Light-Scattering, Stopped-Flow Method......Page 540
Light-Scattering Change of Amylose Induced by the pH-Jump......Page 541
Kinetics of the Retrogradation of Amylose......Page 544
Effect of DP of Amylose on the Retrogradation Kinetics......Page 546
Literature Cited......Page 548
37 Separation of Starch Components by Affinity Chromatography......Page 550
Materials and Methods......Page 551
Results and Discussion......Page 554
Literature Cited......Page 560
A......Page 562
C......Page 563
D......Page 564
G......Page 565
H......Page 566
M......Page 567
P......Page 568
S......Page 569
V......Page 570
Z......Page 571