This is a textbook for courses in civil and mechanical engineering that are commonly called Strength of Materials or Mechanics of Materials. The intent of this book is to provide a background in the mechanics of solids for students of mechanical engineering, while limiting the information on why materials behave as they do. It is assumed that the students have already had courses covering materials science and basic statics. Much of the material is drawn from another book by the author, Mechanical Behavior of Materials. To make the text suitable for mechanical engineers, the chapters on slip, dislocations, twinning, residual stresses, and hardening mechanisms have been eliminated and the treatment of ductility viscoelasticity, creep, ceramics, and polymers has been simplified.
Author(s): William F. Hosford
Year: 2010
Language: English
Pages: 272
Tags: Механика;Механика деформируемого твердого тела;
Half-title......Page 3
Title......Page 5
Copyright......Page 6
Contents......Page 7
SI Prefixes......Page 12
Introduction......Page 13
Stress......Page 14
Sign Convention......Page 15
Transformation of Axes......Page 16
Mohr's Stress Circles......Page 18
Strains......Page 21
Small Strains......Page 23
Transformation of Axes......Page 24
Mohr's Strain Circles......Page 26
Force and Moment Balances......Page 27
Common Boundary Conditions......Page 29
Problems......Page 30
Isotropic Elasticity......Page 33
Variation of Youngs Modulus......Page 36
Isotropic Thermal Expansion......Page 38
Notes......Page 39
Problems......Page 41
Tensile Testing......Page 43
Ductility......Page 47
True Stress and Strain......Page 49
Compression Test......Page 50
Plane-Strain Compression and Tension......Page 54
Biaxial Tension (Hydraulic Bulge Test)......Page 55
Torsion Test......Page 57
Bend Tests......Page 59
Hardness Tests......Page 61
Notes......Page 64
Problems......Page 65
Mathematical Approximations......Page 69
Necking......Page 71
Localization of Strain at Defects......Page 74
Problems......Page 76
Yield Criteria......Page 79
Tresca (maximum shear stress criterion)......Page 80
Von Mises Criterion......Page 81
Flow Rules......Page 83
Principle of Normality......Page 85
Effective Stress and Effective Strain......Page 86
Other Isotropic Yield Criteria......Page 89
Notes......Page 90
Problems......Page 92
Strain-Rate Dependence of Flow Stress......Page 96
Superplasticity......Page 99
Combined Strain and Strain-Rate Effects......Page 104
Combined Temperature and Strain-Rate Effects......Page 105
Hot Working......Page 109
Notes......Page 110
Problems......Page 111
Rheological Models......Page 114
Series Combination of a Spring and Dashpot......Page 115
Parallel Combination of Spring and Dashpot......Page 116
Combined Parallel-Series Model......Page 117
Damping......Page 119
Natural Decay......Page 120
Elastic Modulus – Relaxed vs. Unrelaxed......Page 121
Thermoelastic Effect......Page 122
Other Damping Mechanisms......Page 124
REFERENCES......Page 125
Problems......Page 126
Creep Mechanisms......Page 129
Cavitation......Page 133
Rupture vs. Creep......Page 134
Extrapolation Schemes......Page 135
REFERENCES......Page 137
Problems......Page 138
Introduction......Page 142
Ductile Fracture......Page 144
Brittle Fracture......Page 148
Impact Energy......Page 149
Notes......Page 153
Problems......Page 154
Theoretical Fracture Strength......Page 155
Stress Concentration......Page 157
Griffith and Orowan Theories......Page 158
Fracture Modes......Page 159
Irwins Fracture Analysis......Page 160
Plastic Zone Size......Page 162
Thin Sheets......Page 164
Metallurgical Variables......Page 165
Fracture Mechanics in Design......Page 166
Compact Tensile Specimens......Page 167
The J-Integral......Page 168
Problems......Page 170
Surface Observations......Page 173
Nomenclature......Page 175
S-N Curves......Page 176
Effect of Mean Stress......Page 178
The Palmgren-Miner Rule......Page 180
Stress Concentration......Page 181
Surface Conditions......Page 183
Design Estimates......Page 185
Metallurgical Variables......Page 186
Strains to Failure......Page 187
Crack Propagation......Page 189
Cyclic Stress-Strain Behavior......Page 192
Temperature and Cycling Rate Effects......Page 193
Design Considerations......Page 194
REFERENCES......Page 195
Problems......Page 196
Glass Transition......Page 199
Time Dependence of Properties......Page 201
Rubber Elasticity......Page 202
Yielding......Page 203
Crazing......Page 206
Weibull Analysis......Page 207
Porosity......Page 208
Fracture Toughness......Page 210
Thermally Induced Stresses......Page 211
REFERENCES......Page 213
Problems......Page 214
Elastic Properties of Fiber-Reinforced Composites......Page 215
Strength of Fiber-Reinforced Composites......Page 219
Orientation Dependence of Strength......Page 221
Fiber Length......Page 223
Failures with Discontinuous Fibers......Page 225
Failure Under Compression......Page 226
Typical Properties......Page 227
Particulate Composites......Page 228
Lamellar Composites......Page 231
Foams......Page 232
Problems......Page 234
Bulk Forming Energy Balance......Page 236
Deformation Zone Geometry......Page 241
Friction in Bulk Forming......Page 242
Formability......Page 245
Deep Drawing......Page 246
Stamping......Page 248
Notes......Page 253
Problems......Page 254
Elastic Anisotropy......Page 258
Thermal Expansion......Page 262
Anisotropic Plasticity......Page 263
Anisotropy of Fracture......Page 268
Notes......Page 269
Problems......Page 270
Index......Page 272