Solar Energy Conversion Systems In The Built Environment

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book focuses on solar energy conversion systems that can be implemented in the built environment, at building or at community level. The quest for developing a sustainable built environment asks for specific solutions to provide clean energy based on renewable sources, and solar energy is considered one of the cleanest available energy on Earth. The specific issues raised by the implementation location are discussed, including the climatic profile distorted by the buildings, the available surface on the buildings for implementation, etc. This book also discusses the seasonal and diurnal variability of the solar energy resource in parallel with the variability of the electrical and thermal energy demand in the built environment (particularly focusing on the residential buildings). Solutions are proposed to match these variabilities, including the development of energy mixes with other renewables (e.g. geothermal or biomass, for thermal energy production). Specific solutions, including case studies of systems implemented on buildings all over the world, are presented and analyzed for electrical and for thermal energy production and the main differences in the systems design are outlined. The conversion efficiency (thus the output) and the main causes of energy losses are considered in both cases. The architectural constraints are additionally considered and novel solar energy convertors with different shapes and colors are presented and discussed. The durability of the solar energy conversion systems is analyzed considering the specific issues that occur when these systems are implemented in the built environment; based on practical examples, general conclusions are formulated and specific aspects are discussed in relation to experimental results and literature data. With renewables implemented in the built environment likely to expand in the near future, this book represents welcome and timely material for all professionals and researchers that are aiming to provide efficient and feasible solutions for the sustainable built environment.

Author(s): Ion Visa, Anca Duta, Macedon Moldovan, Bogdan Burduhos, Mircea Neagoe
Series: Green Energy And Technology
Publisher: Springer
Year: 2020

Language: English
Pages: 391
Tags: Renewable And Green Energy

Preface......Page 6
Contents......Page 8
1.1 Building, Built Environment, Community......Page 11
1.2.1 Energy Demand at Building Level......Page 21
1.2.2 Energy Demand at Community Level......Page 31
1.3 The Energy Consumption in the Built Environment......Page 35
1.4 Indicators for Buildings Efficiency and Sustainability......Page 45
References......Page 61
2.1.1 Solar Radiation......Page 68
2.1.2 Solar Energy Available in the Built Environment......Page 91
2.2.1 Geothermal Energy......Page 112
2.2.2 Bioenergy......Page 116
2.2.3 Wind Energy......Page 120
2.2.4 Hydro-energy......Page 126
2.3.1 Solar Thermal Systems......Page 129
2.3.2 Photovoltaic Systems......Page 137
2.4 Energy Mixes Based on Solar Energy Conversion Systems......Page 153
2.4.1 Solar Thermal–Heat Pump Systems......Page 154
2.4.2 Solar Thermal–Biomass Systems......Page 157
2.4.3 Solar PV–Wind Systems......Page 158
References......Page 160
3.1 Photovoltaic Systems at Building and Community Level......Page 168
3.2 Design of the PV Systems Implemented in the Built Environment......Page 174
3.2.1 Special Requirements for Installing PV Systems......Page 175
3.2.2 The Design Algorithm of PV Systems......Page 181
3.3 Increasing the Electrical Output of PV Systems by Using Solar Tracking......Page 193
3.3.1 Solar Angles......Page 195
3.3.2 Solar Tracking Systems......Page 203
3.3.3 Solar Tracking Algorithms and Programmes......Page 207
3.3.4 Case Study: Tracked Versus Fixed Tilted PV Systems......Page 213
3.4 Exploitation and Maintenance of the PV Systems......Page 219
3.4.1 Exploitation of the PV Systems in the Built Environment......Page 220
3.4.2 Maintenance of the PV Systems Implemented in the Built Environment......Page 224
3.5 Photovoltaic—Wind Energy Mixes in the Built Environment......Page 229
3.5.1 Examples of Photovoltaic—Wind Hybrid Systems......Page 230
3.5.2 Sizing the PV-Wind Hybrid Systems......Page 231
3.6 Economic and Financial Aspects of the PV Systems......Page 234
3.7 Integrating the Renewable Energy Systems in the Urban Electrical Distribution and Transmission Infrastructure......Page 240
3.7.2 Functional Requirements......Page 241
3.7.3 Monitoring Requirements......Page 242
References......Page 243
4.1 Solar Thermal Systems in Buildings and at Community Level......Page 249
4.2 Design of the Solar Thermal Systems Implemented in the Built Environment......Page 254
4.3 Optimizing the Thermal Output of Solar Thermal Systems by Using Solar Tracking......Page 272
4.3.1 Increasing the Thermal Energy Output by Forward Tracking......Page 275
4.3.2 Protection Against Overheating by Inverse Tracking......Page 277
4.3.3 Tracking Solar Thermal Collectors Applied on the Buildings’ Facades......Page 281
4.4 Increasing the Solar Energy Share in Meeting the Thermal Energy Demand of a Building Through Solar Thermal Facades......Page 287
4.5 Exploitation and Maintenance of the Solar Thermal Systems Implemented in the Built Environment......Page 304
4.6 Renewable Energy Mixes Based on Solar Energy in nZEB......Page 309
4.6.1 Solar Thermal–Geothermal Energy Mixes in Buildings......Page 311
4.6.2 Solar Thermal–Geothermal–Photovoltaic Energy Mixes......Page 314
4.7 Economic and Financial Aspects of Solar Thermal Systems Implemented in the Built Environment......Page 326
References......Page 330
5.1 PVT Systems......Page 335
5.1.1 PVT Modules......Page 338
5.2 PVT Integration in the Built Environment......Page 340
5.3 Economic and Financial Aspects of Building Integrated PVT Systems......Page 346
References......Page 347
6 Sustainable Communities......Page 348
6.1 Nearly Zero Energy Community......Page 352
6.2 Steps in Implementing Renewable Energy Systems in NZEB and in NZEC......Page 360
6.3 Operation and Energy Management......Page 367
6.4.1 Rural Sustainable Communities, Europe......Page 371
6.4.3 University of California Davis, West Village, California, USA......Page 372
6.4.4 Sino-Singapore Tianjin Eco-City, China......Page 373
6.4.5 Saerbeck, Germany......Page 374
6.4.6 The Genius Campus in the Transilvania University of Brasov, Romania......Page 375
6.5 Emergent Trends in Using Solar Energy at Community Level......Page 380
References......Page 386