Solar Chimney Power Plants: Numerical Investigations and Experimental Validation summarizes the effect of the geometrical parameters of a solar chimney on the airflow behavior inside a solar chimney power plant. Chapters in this experimental handbook are presented in two parts with the goal of equipping readers with the information necessary to study and determine key factors which affect the performance of the solar chimney power plant.In the first part, the authors present a simulation developed by using computational fluid dynamics (CFD) modeling software ANSYS Fluent to model the airflow. The adopted CFD models include k-ɛ turbulence model, the DO radiation model and the convection heat flux transfer model. These models have been validated with anterior experimental results.In the second part, the simulated models are then tested with alternate geometric configurations of the solar chimney power plant. The numerical studies allow readers to consider ways to expand on the design optimizing of the solar chimney when constructing a prototype. Geometrical parameters include the height, the diameter of the chimney and the dimensions of the solar collector and their effect on the temperature and air pressure is documented to validate models used for experimental simulations.The handbook also includes a study of an experimental prototype, constructed at ENIS. The researchers have gathered data on the environmental temperature, distribution of the temperature, air velocity and the power output generated by the turbine, the solar radiation and the gap of temperature in the collector of the prototype.
Author(s): Haythem Nasraoui, Moubarek Bsisa, Zied Driss
Series: Recent Advances in Renewable Energy
Publisher: Bentham Science Publishers
Year: 2020
Language: English
Pages: 210
City: Singapore
CONTENTS
PREFACE
ACKNOWLEDGEMENT
CONSENT FOR PUBLICATION
CONFLICT OF INTEREST
Nomenclature
Introduction
Bibliographic Study
1. INTRODUCTION
2. SOLAR ENERGY
2.1. Solar Spectrum
2.2. Irradiation Areas
2.3. Advantages and Disadvantages of Solar Energy
3. DIFFERENT TYPES OF SOLAR SYSTEMS
3.1. System Photovoltaic (Fig. 1.5).
3.2. Thermal System
3.3. Thermodynamic System
3.3.1. Parabolic trough systems (Fig. 1.7)
3.3.2. Solar Power Stations with Fresnel Mirror (Fig. 1.8)
3.3.3. Solar Tower Power Plants (Fig. 1.9)
3.3.4. Dish Systems (Fig. 1.10)
3.3.5. Limitation of Photovoltaics and Thermodynamic System
3.3.6. Solar Chimney Power Plant
4. SOLAR CHIMNEY
4.1. Description
4.2. Greenhouse Effect
4.3. Principle
4.4. Mainly Components of the Solar Chimney
4.4.1. Collector
4.4.2. Chimney
4.4.3. Turbine
4.5. Energy Storage
4.6. Advantages and Disadvantages
4.7. The Efficiency of Solar Chimney
4.7.1. Collector Efficiency
4.7.2. The efficiency of the chimney
4.7.3. The Eefficiency of the Turbine and Generator
4.7.4. Power
5. A SOLAR CHIMNEY TIMELINE
5.1. Mainly Current Projects
5.2. Floating Solar Chimney Technology
5.3. Experimental Prototypes
CONCLUSION
Numerical Approach
1. INTRODUCTION
2. MATHEMATICAL FORMULATION
2.1. Governing Conservation Equations
2.2. Simplifying Assumptions
2.3. Simplified Equations
3. COMPUTATIONAL FLUID DYNAMICS (CFD)
3.1. Need of CFD
3.2. CFD Strategy
3.3. Mesh
3.4. Discretization Methods
3.5. Convergence Criteria
3.6. Turbulent Models
3.6.1. k-ε Model
3.6.2. k-kl-ω Transition Model
3.6.3. Transition SST Model
3.7. Discrete Ordinates (DO) Radiation Model Theory
CONCLUSION
Numerical Models Choice and Validation with Anterior Results
1. INTRODUCTION
2. DESCRIPTION OF THE PROBLEM
3. NUMERICAL MODEL
3.1. Boundary Conditions
3.2. CFD Parameters
4. MESHING EFFECT
5. TURBULENCE MODEL EFFECT
5.1. Temperature
5.2. Magnitude Velocity
5.3. Static Pressure
5.4. Dynamic Pressure
5.5. Radiation
5.6. Turbulent Kinetic Energy
5.7. Dissipation Rate of the Turbulent Kinetic Energy
6. HEAT TRANSFER MODE EFFECT IN THE ABSORBER
6.1. Temperature
6.2. Magnitude Velocity
6.3. Radiation
6.4. Enthalpy
6.5. Static Pressure
6.6. Dynamic Pressure
6.7. Turbulent Kinetic Energy
6.8. Dissipation Rate of the Turbulent Kinetic Energy
7. HEAT TRANSFER MODE EFFECT IN THE COLLECTOR
7.1. Temperature
7.2. Magnitude Velocity Profiles
7.3. Radiation
7.4. Enthalpy
7.5. Static Pressure
7.6. Dynamic Pressure
7.7. Turbulent Kinetic Energy
7.8. Dissipation Rate of the Turbulent Kinetic Energy
CONCLUSION
Design of Prototype
1. INTRODUCTION
2. SOLAR CHIMNEY SYSTEM
3. NUMERICAL PARAMETERS
3.1. Meshing
3.2. Boundary Conditions and Numerical Parameters
4. SIZING OF PROTOTYPE
4.1. Collector Diameter Effect
4.1.1. Magnitude Velocity
4.1.2. Temperature
4.1.3. Static Pressure
4.1.4. Turbulent Kinetic Energy
4.1.5. Dissipation Rate of the Turbulent Kinetic Energy
4.1.6. Turbulent Viscosity
4.2. Collector Slope Angle Effect
4.2.1. Magnitude Velocity
4.2.2. Temperature
4.2.3. Static Pressure
4.2.4. Turbulent Kinetic Energy
4.2.5. Dissipation Rate of the Turbulent Kinetic Energy
4.2.6. Turbulent Viscosity
4.3. Collector Height Effect
4.3.1. Magnitude Velocity
4.3.2. Temperature
4.3.3. Static Pressure
4.3.4. Turbulent Kinetic Energy
4.3.5. Dissipation Rate of the Turbulent Kinetic Energy
4.3.6. Turbulent Viscosity
4.4. Chimney Diameter Effect
4.4.1. Magnitude Velocity
4.4.2. Temperature
4.4.3. Static Pressure
4.4.4. Turbulent Kinetic Energy
4.4.5. Dissipation Rate of the Turbulent Kinetic Energy
4.4.6. Turbulent Viscosity
4.5. Chimney Height Effect
4.5.1. Magnitude Velocity
4.5.2. Temperature
4.5.3. Static Pressure
4.5.4. Turbulent Kinetic Energy
4.5.5. Dissipation Rate of the Turbulent Kinetic Energy
4.5.6. Turbulent Viscosity
4.6. Chimney Forms Effect
4.6.1. Magnitude Velocity
4.6.2. Static Pressure
4.6.3. Turbulent Kinetic Energy
4.6.4. Dissipation Rate of the Turbulent Kinetic Energy
4.6.5. Turbulent Viscosity
5. OPTIMUM GEOMETRY CHOICE
6. VALIDATION WITH EXPERIMENTAL RESULTS
CONCLUSION
Experimental Study
1. INTRODUCTION
2. PROTOTYPE PRESENTATION
2.1. Collector
2.2. Chimney and Support
2.3. Turbine Generator
2.4. Absorber
3. INSTRUMENTATION
3.1. Velocity Measuring
3.2. Temperature Measuring
3.3. Measuring Location
3.4. Electric Power Measuring
4. EXPERIMENTAL RESULTS
4.1. Radiation
4.1.1. Daily Radiation
4.1.2. Typical Day
4.2. Temperature
4.2.1. Daily Temperature
4.2.2. Typical Day
4.3. Velocity
4.3.1. Daily Velocity
4.3.2. Typical Day
4.4. Power Output
4.5. Correlation
4.5.1. Velocity
4.5.2. Power Output
CONCLUSION
Conclusion and Recommendations
References
REFERENCES