Smoothing Spline ANOVA Models

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Nonparametric function estimation with stochastic data, otherwise

known as smoothing, has been studied by several generations of

statisticians. Assisted by the ample computing power in today's

servers, desktops, and laptops, smoothing methods have been finding

their ways into everyday data analysis by practitioners. While scores

of methods have proved successful for univariate smoothing, ones

practical in multivariate settings number far less. Smoothing spline

ANOVA models are a versatile family of smoothing methods derived

through roughness penalties, that are suitable for both univariate and

multivariate problems.

In this book, the author presents a treatise on penalty smoothing

under a unified framework. Methods are developed for (i) regression

with Gaussian and non-Gaussian responses as well as with censored lifetime data; (ii) density and conditional density estimation under a

variety of sampling schemes; and (iii) hazard rate estimation with

censored life time data and covariates. The unifying themes are the

general penalized likelihood method and the construction of

multivariate models with built-in ANOVA decompositions. Extensive

discussions are devoted to model construction, smoothing parameter

selection, computation, and asymptotic convergence.

Most of the computational and data analytical tools discussed in the

book are implemented in R, an open-source platform for statistical

computing and graphics. Suites of functions are embodied in the R

package gss, and are illustrated throughout the book using simulated

and real data examples.

This monograph will be useful as a reference work for researchers in

theoretical and applied statistics as well as for those in other

related disciplines. It can also be used as a text for graduate level

courses on the subject. Most of the materials are accessible to a

second year graduate student with a good training in calculus and

linear algebra and working knowledge in basic statistical inferences

such as linear models and maximum likelihood estimates.

Author(s): Chong Gu (auth.)
Series: Springer Series in Statistics 297
Edition: 2
Publisher: Springer-Verlag New York
Year: 2013

Language: English
Pages: 433
Tags: Statistical Theory and Methods

Front Matter....Pages i-xviii
Introduction....Pages 1-21
Model Construction....Pages 23-60
Regression with Gaussian-Type Responses....Pages 61-123
More Splines....Pages 125-173
Regression with Responses from Exponential Families....Pages 175-214
Regression with Correlated Responses....Pages 215-236
Probability Density Estimation....Pages 237-284
Hazard Rate Estimation....Pages 285-318
Asymptotic Convergence....Pages 319-350
Penalized Pseudo Likelihood....Pages 351-385
Back Matter....Pages 387-433