Small and Short-Range Radar Systems

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Radar Expert, Esteemed Author Gregory L. Charvat on CNN and CBS Author Gregory L. Charvat appeared on CNN on March 17, 2014 to discuss whether Malaysia Airlines Flight 370 might have literally flown below the radar. He appeared again on CNN on March 20, 2014 to explain the basics of radar, and he explored the hope and limitations of the technology involved in the search for Flight 370 on CBS on March 22, 2014. Get His Book Now Coupling theory with reality, from derivation to implementation of actual radar systems, Small and Short-Range Radar Systems analyzes and then provides design procedures and working design examples of small and short-range radar systems. Discussing applications from automotive to through-wall imaging, autonomous vehicle, and beyond, the practical text supplies high-level descriptions, theoretical derrivations, back-of-envelope calculations, explanations of processing algorithms, and case studies for each type of small radar system covered, including continuous wave (CW), ultrawideband (UWB) impulse, linear frequency modulation (FM), linear rail synthetic aperture radar (SAR), and phased array. This essential reference: Explains how to design your own radar devices Demonstrates how to process data from small radar sensors Provides real-world, measured radar data to test algorithms before investing development time

Author(s): Gregory L. Charvat
Series: Gregory L. Charvat Series on Practical Approaches to Electrical Engineering
Publisher: CRC Press
Year: 2014

Language: English
Pages: xlii+386
Tags: Приборостроение;Радиолокация;

RAdio Direction And Ranging (RADAR)
Radio Transmitters and Receivers
Generating Electromagnetic Fields and Maxwell's Equations
Far Field and Near Field
Polarization
Constitutive Parameters, or the Medium in which a Wave Propagates
Electric and Magnetic Antennas
Most-Used Solution to the Wave Equation for Radar Systems
Transmission Lines
Scattering Parameters
Characteristics of Antennas
Friis Transmission Equation
Radio Receivers
Tuned Radio Frequency (TRF) Receivers
Heterodyne Receivers and the Frequency Mixer
Single Sideband (SSB) Receivers
Noise Figure
Receiver Sensitivity
Radio Transmitters
Pulsed Radar System
Phase Coherent Radar System
A Simple Phased Coherent Radar System
Pulsed Phase Coherent Radar Systems
Estimating Radar Performance using the Radar Range Equation
Small and Short Range Radars
I. Short-Range Radar Systems and Implementations
Continuous Wave (CW) RADAR
CW RADAR Architecture
Signal Processing for CW Doppler Radar
Frequency Counter
Frequency-to-Voltage Converter
Discrete Fourier Transform
The Radar Range Equation for CW Doppler Radar
Examples of CW Radar Systems
The MIT Independent Activities Period (IAP) Radar in Doppler Mode
Expected Performance of the MIT 'Coffee Can' Radar in Doppler Mode
Working Example of the MIT 'Coffee Can' Radar in Doppler Mode
An X-Band CW Radar System
Expected Performance of the X-Band CW Radar System
Working Example of the X-Band CW Radar System
Harmonic Radar
CW Harmonic Radar System at 917 MHz
Implementation
Harmonic Radar Tags
Results
Summary
Frequency Modulated Continuous Wave (FMCW) Radar
FMCW Architecture and Signal Processing
FMCW Architecture
Mathematics of FMCW Radar
Signal Processing for FMCW Radar and the Inverse Discrete Fourier Transform
Frequency Counter and Frequency-to-Voltage Converters
Inverse Discrete Fourier Transform
Coherent Change Detection (CCD)
FMCW Performance
The Radar Range Equation for FMCW Radar
Range Resolution
Examples of FMCW Radar Systems
X-Band UWB FMCW Radar System
Expected Performance of the X-Band UWB FMCW Radar System
Working Example of the X-Band UWB FMCW Radar System
The MIT Coffee Can Radar System in Ranging Mode
Expected Performance of the MIT Coffee Can Radar System in Ranging Mode
Working Example of the MIT Coffee Can Radar System in Ranging Mode
Range-Gated UWB FMCW Radar System
Analog Range Gate
S-Band Implementation
Expected Performance of the Range Gated SBand FMCW Radar System
Working Example of the Range Gated S-Band FMCW Radar System
X-Band Implementation of a Range-Gated FMCW Radar System
Expected Performance of the Range Gated X-Band FMCW Radar System
Working Example of the Range Gated X-Band FMCW Radar System
Summary
Synthetic Aperture Radar
Measurement Geometry
The Range Migration Algorithm (RMA)
Simulation of a Point Scatterer
Cross Range Fourier Transform
Matched Filter
Stolt Interpolation
Inverse Fourier Transform to Image Domain
Simulation of Multiple Point Targets
Estimating Performance
The Radar Range Equation Applied to SAR
Resolution of SAR Imagery
Additional Processing
Calibration
Coherent Background Subtraction and Coherent Change Detection (CCD)
Motion Compensation
Summary
Practical Examples of Small Synthetic Aperture Radar Imaging Systems
UWB FMCW X-Band Rail SAR Imaging System
Expected Performance
Maximum Range and Minimum Target RCS
Range Resolution Estimate
Implementation
Measured Results
Resoltuion
Sensitivity
Imagery
MIT Coffee Can Radar in Imaging Mode
Expected Performance
Maximum Range and Minimum Target RCS
Range Resolution Estimate
Implementation
Measured Results
Range-Gated FMCW Rail SAR Imaging Systems
X-Band
Implementation
Expected Performance
Measured Results
S-Band
Implementation
Expected Performance
Measurements
Summary
Phased Array Radar
Near-Field Phased Array Radar
Near-Field Beamforming using SAR Imaging Algorithms
Performance of Small Phased Array Radar Systems
The Radar Range Equation for Phased Array Radar Systems
Resolution of Near Field Phased Array Imagery
Processing
Calibration
Coherent Background Subtraction and Coherent Change Detection (CCD)
An S-Band Switched Array Radar Imaging System
System Implementation
Performance Estimate
Free Space Results
Simulated Sidelobes
Measured Sidelobes
Resolution
Low RCS Imagery
Demonstrations
MIT IAP Phased Array Radar Course
Summary
Ultrawideband (UWB) Impulse Radar
Architectures for UWB Impulse Radar
Basic UWB Impulse Radar System
UWB Impulse Radar using Frequency Conversion
Signal Processing for UWB Impulse Radar
Computing Range to Target
Calibration
Synthetic Aperture Radar
Coherent Change Detection (CCD)
Expected Performance of UWB Impulse Radar Systems
The Radar Range Equation for UWB Impulse Radar
Range Resolution for UWB Impulse Radar
UWB Impulse Radar Systems
X-Band UWB Impulse Radar System
Implementation
Expected Performance
Ranging Example
X-Band Impulse SAR Imaging System
Implementation
Expected Performance
Impulse SAR Data Acquisition and Processing
Imaging Example
Summary
II. Applications
Police Doppler Radar and Motion Sensors
The Gunnplexer
Police Doppler Radar
K-Band Police Doppler Radar
Estimated Performance
Experimental Results
Digital Signal Processing for an Old X-Band Police Doppler Radar Gun
Expected Performance
Working Example
Doppler Motion Sensors
Summary
Automotive Radar
Challenges in Automotive Domain
The Automotive Domain Surrounding Sensing
Performance Limitations of Today's Automotive SRRs
Challenges with Vehicle Integration
SRR Packaging Challenges
Automotive 77 Ghz vs. 24 Ghz
Cost and Long Term Reliability
Regulatory Issues
Blockage
Elements of Automotive Radar
Antenna
Analog Front End
Radar Processor
Waveforms for Automotive Radar
Doppler Shift
Linear Frequency Modulation
Frequency Shift Keying
Hybrid Waveform of FSK and LFM
Pulse Compression LFM Waveform
Range and Range Rate Estimation
Target Detection
Matched Filter and Ambiguity Function
Estimation Accuracy
Direction Finding
Linear Array Antenna
Digital Beamforming
Monopulse
Simultaneous Processing for Range, Doppler, and Angle
Fusion of Multiple Sensors
Automotive Sensor Technology
Ultrasonic
Lidar
Camera
Fusion Algorithm
Architecture Aspect
Error Model of the Sensor
Data Association
Optimization
Dynamic Models
Algorithm Summary
Online Automatic Registration
Case Studies of ADAS Fusion System
Adaptive Cruise Control
Forward Collision Warning and Braking
Radars and the Urban Grand Challenge
Summary
Through-Wall Radar
Radar Range Equation for Through Wall Radar
Through-Wall Model
1D Model for Simulating Range Profiles
2D Model for Simulating Rail SAR Imagery
2D Model for Switched or Multiple Input Multiple Output Arrays
Examples of Through-Wall Imaging Systems
S-Band Range Gated FMCW Rail SAR
Implementation
Expected Performance
Results
S-Band Switched Array
Implementation
Expected Performance
Results
Real-Time Through-Wall Radar Imaging System
Implementation
Expected Performance
Results
Summary