Single Variable Calculus: Early Transcendentals, Metric Version

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

SINGLE VARIABLE CALCULUS: EARLY TRANSCENDENTALS, Metric, 9th Edition, provides you with the strongest foundation for a STEM future. James Stewarts Calculus, Metric series is the top-seller in the world because of its problem-solving focus, mathematical precision and accuracy, and outstanding examples and problem sets. Selected and mentored by Stewart, Daniel Clegg and Saleem Watson continue his legacy and their careful refinements retain Stewarts clarity of exposition and make the 9th edition an even more usable learning tool. The accompanying WebAssign includes helpful learning support and new resources like Explore It interactive learning modules. Showing that Calculus is both practical and beautiful, the Stewart approach and WebAssign resources enhance understanding and build confidence for millions of students worldwide.

Author(s): James Stewart, Daniel K. Clegg, Saleem Watson
Edition: 9
Publisher: Cengage Learning
Year: 2020

Language: English
Pages: 1005
Tags: Calculus; Single Variable Calculus;

Cover
Contents
Preface
A Tribute to James Stewart
About the Authors
Technology in the Ninth Edition
To the Student
Diagnostic Tests
A: Diagnostic Test: Algebra
B: Diagnostic Test: Analytic Geometry
C: Diagnostic Test: Functions
D: Diagnostic Test: Trigonometry
A Preview of Calculus
What Is Calculus?
The Area Problem
The Tangent Problem
A Relationship between the Area and Tangent Problems
Summary
Chapter 1: Functions and Models
1.1 Four Ways to Represent a Function
1.2 Mathematical Models: A Catalog of Essential Functions
1.3 New Functions from Old Functions
1.4 Exponential Functions
1.5 Inverse Functions and Logarithms
1 Review
Principles of Problem Solving
Chapter 2: Limits and Derivatives
2.1 The Tangent and Velocity Problems
2.2 The Limit of a Function
2.3 Calculating Limits Using the Limit Laws
2.4 The Precise Definition of a Limit
2.5 Continuity
2.6 Limits at Infinity; Horizontal Asymptotes
2.7 Derivatives and Rates of Change
2.8 The Derivative as a Function
2 Review
Problems Plus
Chapter 3: Differentiation Rules
3.1 Derivatives of Polynomials and Exponential Functions
3.2 The Product and Quotient Rules
3.3 Derivatives of Trigonometric Functions
3.4 The Chain Rule
3.5 Implicit Differentiation
3.6 Derivatives of Logarithmic and Inverse Trigonometric Functions
3.7 Rates of Change in the Natural and Social Sciences
3.8 Exponential Growth and Decay
3.9 Related Rates
3.10 Linear Approximations and Differentials
3.11 Hyperbolic Functions
3 Review
Problems Plus
Chapter 4: Applications of Differentiation
4.1 Maximum and Minimum Values
4.2 The Mean Value Theorem
4.3 What Derivatives Tell Us about the Shape of a Graph
4.4 Indeterminate Forms and l'Hospital's Rule
4.5 Summary of Curve Sketching
4.6 Graphing with Calculus and Technology
4.7 Optimization Problems
4.8 Newton's Method
4.9 Antiderivatives
4 Review
Problems Plus
Chapter 5: Integrals
5.1 The Area and Distance Problems
5.2 The Definite Integral
5.3 The Fundamental Theorem of Calculus
5.4 Indefinite Integrals and the Net Change Theorem
5.5 The Substitution Rule
5 Review
Problems Plus
Chapter 6: Applications of Integration
6.1 Areas between Curves
6.2 Volumes
6.3 Volumes by Cylindrical Shells
6.4 Work
6.5 Average Value of a Function
6 Review
Problems Plus
Chapter 7: Techniques of Integration
7.1 Integration by Parts
7.2 Trigonometric Integrals
7.3 Trigonometric Substitution
7.4 Integration of Rational Functions by Partial Fractions
7.5 Strategy for Integration
7.6 Integration Using Tables and Technology
7.7 Approximate Integration
7.8 Improper Integrals
7 Review
Problems Plus
Chapter 8: Further Applications of Integration
8.1 Arc Length
8.2 Area of a Surface of Revolution
8.3 Applications to Physics and Engineering
8.4 Applications to Economics and Biology
8.5 Probability
8 Review
Problems Plus
Chapter 9: Differential Equations
9.1 Modeling with Differential Equations
9.2 Direction Fields and Euler's Method
9.3 Separable Equations
9.4 Models for Population Growth
9.5 Linear Equations
9.6 Predator-Prey Systems
9 Review
Problems Plus
Chapter 10: Parametric Equations and Polar Coordinates
10.1 Curves Defined by Parametric Equations
10.2 Calculus with Parametric Curves
10.3 Polar Coordinates
10.4 Calculus in Polar Coordinates
10.5 Conic Sections
10.6 Conic Sections in Polar Coordinates
10 Review
Problems Plus
Chapter 11: Sequences, Series, and Power Series
11.1 Sequences
11.2 Series
11.3 The Integral Test and Estimates of Sums
11.4 The Comparison Tests
11.5 Alternating Series and Absolute Convergence
11.6 The Ratio and Root Tests
11.7 Strategy for Testing Series
11.8 Power Series
11.9 Representations of Functions as Power Series
11.10 Taylor and Maclaurin Series
11.11 Applications of Taylor Polynomials
11 Review
Problems Plus
Appendixes
Appendix A: Numbers, Inequalities, and Absolute Values
Appendix B: Coordinate Geometry and Lines
Appendix C: Graphs of Second-Degree Equations
Appendix D: Trigonometry
Appendix E: Sigma Notation
Appendix F: Proofs of Theorems
Appendix G: The Logarithm Defined as an Integral
Appendix H: Answers to Odd-Numbered Exercises
Index