Author(s): Enrico Prati; Takahiro Shinada
Publisher: Pan Stanford Publishing
Year: 2013
Language: English
Pages: 352
City: Singapore
Tags: Специальные дисциплины;Наноматериалы и нанотехнологии;Наноэлектроника;
Front Cover......Page 1
Copyright......Page 5
Contents......Page 6
Preface......Page 12
Introduction......Page 14
Quantum Information in Silicon Devices Based on Individual Dopants......Page 18
2.1 Physics of Impurities in Silicon......Page 19
2.1.1 Isolated Donor Regime......Page 20
2.1.2 Semidilute Regime and Impurity Pairs......Page 22
2.1.3 Intermediate Regime and Impurity Bands......Page 23
2.1.4 Effects of Confinement on the Donor Ground State......Page 24
2.2 Topology of Individual Donors Embedded in Silicon Devices......Page 26
2.3.1 Quantum Information......Page 31
2.3.2 Donor-Based Qubits in Silicon......Page 33
2.4 Electron Spin Qubits with Donors......Page 35
2.5 Coherent Passage of Information......Page 38
2.6 Decoherence......Page 43
2.7 Quantum Nondemolition Measurements of Single-Donor Nuclear and Electron Spins......Page 45
References......Page 48
Theory and Simulations of Controlled Electronic States Bound to a Single Dopant in Silicon......Page 54
3.1 Tight-Binding Method and NEMO-3D......Page 55
3.2 Electronic Structure of a Group V Donor in Bulk Silicon......Page 56
3.3 Donor Qubits in Silicon......Page 58
3.4 Orbital Stark Effect of Donors in Nanostructures......Page 59
3.4.1 Coulomb Confinement......Page 61
3.4.3 Interfacial Confinement......Page 62
3.4.4 Valley–Orbit Splitting......Page 63
3.5 Hyperfine Stark Effect......Page 64
3.5.1 Hyperfine Effect in Bulk Donors......Page 65
3.5.2 Hyperfine Effect at High Fields in Nanostructures......Page 66
References......Page 68
Using Scanning Tunneling Microscopy to Realize Atomic-Scale Silicon Devices......Page 74
4.1 Outline of the Fabrication Strategy......Page 77
4.2 All-Epitaxial Dopant-Based Quantum Dots......Page 83
4.3 Downscaling of Dopant-Based Devices......Page 86
4.4 Toward Deterministic Single-Atom Devices......Page 91
4.5 Toward a Planar Qubit Architecture......Page 93
References......Page 96
Deterministic Single-Ion Implantation Method for Extending CMOS Technologies......Page 102
5.1 The Importance of Deterministic Doping......Page 103
5.2.1 Extraction of a Single Ion by Chopping a Focused Ion Beam......Page 105
5.2.2 Control of the Single-Ion Number by Detecting Secondary Electrons......Page 106
5.2.3 Control of Single-Ion Number by Detecting Change in Drain Current......Page 112
5.3 Ordered Dopant Arrays......Page 115
5.4 Asymmetric Ordered Dopant Effects on Transistor Performances......Page 119
5.5 Quantum Transport in Deterministically Implanted Single Donors......Page 123
5.6 Future Issues......Page 125
References......Page 127
Single-Ion Implantation for Quantum Computing......Page 132
6.1 Quantum Computation......Page 133
6.2 Single-Ion Implantation......Page 136
6.2.1 Single-Ion Implantation from Ion-Induced Charge......Page 141
6.2.2 Single-Ion Implantation from Drain Current Modulation......Page 147
6.2.3 Postimplantation Selection of Single Implanted Ions......Page 150
6.3 Future Prospects......Page 152
6.4 Future Perspectives......Page 153
Acknowledgments......Page 154
References......Page 155
7.1 Introduction to the Single Atom Imaging......Page 164
7.2 Atom Probe Tomography......Page 167
7.2.1 Principles of Atom Probe Tomography......Page 168
7.2.2 Local Electrode Atom Probe......Page 170
7.2.3 Specimen Preparation......Page 171
7.3.1 Dopant Distribution in a Laterally Uniform MOSFET Structure......Page 173
7.3.2 Dopant Distribution in a Gate-Patterned MOSFET Structure......Page 180
7.4 Dopant Distribution in FinFETs......Page 187
7.5 Future Prospects for APT......Page 192
References......Page 193
Low-Noise Current Measurements on Quantum Devices Operating at Cryogenic Temperature......Page 200
8.1 Fundamentals of Current Measurements......Page 203
8.2 Design Rules for Low-Noise Transimpedance Amplifiers......Page 206
8.3 Wide-Band Transimpedance Amplifiers......Page 209
8.4 Cryogenic CMOS Amplifiers: Challenges and Opportunities......Page 213
8.4.1 Low-Temperature Behavior of Silicon CMOS Technology......Page 214
8.4.2 Cryogenic CMOS Transimpedance Amplifier......Page 217
8.5 General Considerations......Page 219
References......Page 220
Orbital Structure and Transport Characteristics of Single Donors......Page 224
9.1 Literature Review......Page 225
9.2.1 Fabrication......Page 228
9.2.2 Channel Potential......Page 229
9.3.1 Excited-State Spectroscopy......Page 230
9.3.2 Physics of the Level Spectrum......Page 234
9.3.3 Two-Electron State......Page 237
References......Page 239
Single-Donor Transport Spectroscopy in Ultimate Silicon Transistors......Page 244
10.1 Variability in Ultimate Silicon Transistors......Page 245
10.2 CMOS Processes for Single-Atom Transistors......Page 246
10.3 Low-Temperature Spectroscopy and Correlation with 300 K Behavior......Page 251
10.4 Advantages of the Size Reduction in Single-Atom Transistors......Page 254
10.5 What can we Learn from Low-Temperature Transport Spectroscopy in a Single, Shallow Dopant?......Page 256
References......Page 261
A Spin Quantum Bit Architecture with Coupled Donors and Quantum Dots in Silicon......Page 268
11.1 General Considerations......Page 269
11.2 Coupled Donor–Quantum Dot Spin Qubits......Page 270
11.3 Coherence of Donor Spins in......Page 273
11.4 Elements of Device Fabrication for Donor–Dot Spin Qubits......Page 277
11.5 Placement of Single Donors......Page 279
11.6 Single-Ion Implantation......Page 284
Acknowledgments......Page 286
References......Page 287
Single Spins in Diamond: Novel Quantum Devices and Atomic Sensors......Page 294
12.1 Defects in Diamond......Page 295
12.2 Optical Properties of NV Defects......Page 297
12.3 Spin Properties and Spin Readout......Page 300
12.4 Diamond Quantum Registers......Page 302
12.5 Applications of Single-Color Centers for Novel Imaging Techniques......Page 304
12.6 Magnetometry with Single Diamond Spins......Page 306
12.7 Future Perspectives......Page 308
References......Page 309
Silicon-Based Single-Dopant Devices and Integration with Photons......Page 318
13.1 Introduction—Integration of Single-Dopant Electronics and Single-Photon Detection......Page 319
13.2 Single-Dopant Transistors in Dopant-Rich Environments—Dopant-Based Functionalities......Page 320
13.2.1 Donors as Single-Electron Traps—Toward Dopant-Based Memory Operation......Page 321
13.2.2 Dopants as Stepping-Stones in Tunneling Conduction—Single-Electron Turnstile Operation......Page 322
13.2.3 Direct Observation of Dopant Potentials and Electron Charging by Low-Temperature Kelvin Probe Force Microscope......Page 325
13.3 Effects of Photon Illumination on Doped-Nanowire SOI Transistors......Page 327
13.3.1 Basic Principles of Single-Photon Detection with Semiconductor Quantum Dots......Page 328
13.3.2 Photon-Excited Electron Capture in Individual Donors......Page 330
13.3.3 Toward Dopant-Based Optoelectronics......Page 334
References......Page 336
Circuits with Single-Atom Devices......Page 342
14.1 Single-Atom Devices for Circuits......Page 344
14.2 Hybrid Circuits......Page 347
14.3 Full Addition Using a Single-Atom Transistor......Page 348
References......Page 354
Color Insert......Page 358
Back Cover......Page 374