Simultaneous Mass Transfer and Chemical Reactions in Engineering Science: Solution Methods and Chemical Engineering Applications illustrates how mathematical analyses, statistics, numerical analysis and computer programming can summarize simultaneous mass transfer and chemical reactions in engineering science for use in solving problems in quantitative Chemical and Biochemical Engineering design and analysis. The book provides statistical methodologies and R recipes for advective and diffusive problems in various geometrical configurations. The R-package ReacTran is used to showcase transport models in aquatic systems (rivers, lakes, oceans), porous media (floc aggregates, sediments, ...) and even idealized organisms (spherical cells, cylindrical worms, ...).
Key Features
Presents the basic science of diffusional process and mass transfer, along with simultaneous biochemical and chemical reactions
Provides a current working knowledge of simultaneous mass transfer and reactions
Describes useful mathematical models on the quantitative assessment of simultaneous mass transfer and reactions
Focuses on the analysis of systems of simultaneous mass transfer and reactions, discussing the existence and uniqueness of solutions to well-known theoretical models
Author(s): Bertram Chan
Series: Elsevier Science
Edition: 1st
Publisher: Elsevier
Year: 2020
Language: English
Pages: 335
Cover......Page 1
SIMULTANEOUS MASS TRANSFER AND CHEMICAL REACTIONS IN ENGINEERING SCIENCE: Solution Methods and Chemical Engineering Applications......Page 2
Copyright......Page 3
Dedication......Page 4
PREFACE......Page 5
1 . Introduction to simultaneous mass transfer and chemical reactions in engineering science......Page 9
1.1.1.1 The biomedical environment......Page 10
1.1.1.2 The industrial chemistry and chemical engineering environment......Page 12
1.1.1.2.1 Conclusions......Page 16
1.1.1.2.2 Summary......Page 17
1.2.1 Film theory of mass transfer......Page 18
1.2.2 Surface renewal theory of mass transfer......Page 20
1.2.3 Absorption into a quiescent liquid[∗1]......Page 23
1.2.3.1 Absorption accompanied by chemical reactions[∗1]......Page 24
1.2.3.2.1 First-order reactions......Page 25
1.2.3.2.2 Instantaneous reactions......Page 26
1.2.3.2.2.1.1 Worked example 1.1......Page 28
1.2.4 Absorption into agitated liquids [∗4]......Page 29
1.2.4.1 Further references......Page 32
1.2.5.1 Physical absorption......Page 34
1.2.6.1 Preliminary remarks on simultaneous mass transfer (absorption) with chemical reactions......Page 35
1.2.6.2 Some solutions to the mathematical models of the theory of simultaneous mass transfer and chemical reactions......Page 36
1.2.6.3 Approximate closed form solutions∗∗......Page 37
1.3 Diffusive models of environmental transport......Page 45
O......Page 330
Preamble......Page 47
Chemical engineering data coding......Page 49
Data capture......Page 50
Imputations......Page 51
Quality management......Page 52
R and statistics or biostatistics......Page 53
2.2.1 A first lesson using R......Page 57
Additional references......Page 66
3 . Theory of simultaneous mass transfer and chemical reactions, with numerical solutions......Page 69
3.0 The concept of diffusion......Page 75
3.0.1.1 Fick's first law of diffusion (steady state law)......Page 76
3.0.1.2 Fick's second law of diffusion......Page 78
3.1 Simultaneous biomolecular reactions and mass transfer......Page 81
3.3.1 Nernst One-Film theory model and the Lewis-Whitman Two-Film model......Page 82
3.3.2 Higbie penetration theory model......Page 86
3.3.3 Danckwerts surface renewal theory model......Page 89
3.3.4 Boundary layer theory model......Page 90
3.3.5 Mass transfer under laminar flow conditions......Page 91
3.3.6 Mass transfer past solids under turbulent flow......Page 92
3.3.7 Some interesting special conditions of mass transfer......Page 93
3.3.8.1 Designing a packed column for the absorption of gaseous CO2 by a liquid solution of NaOH, using the mathematical model of s .........Page 94
3.3.8.2 Calculation of packed height requirement for reducing the chlorine concentration in a chlorine–air mixture......Page 102
3.4.3 A uniqueness theorem of the governing simultaneous semi-linear parabolic partial differential equations......Page 105
3.5 Theory of simultaneous bimolecular reactions and mass transfer in two dimensions......Page 106
3.5.1 An existence theorem of the governing simultaneous semi-linear parabolic partial differential equations......Page 140
3.6 A uniqueness theorem of the governing simultaneous semi-linear parabolic partial differential equations......Page 147
4 . Numerical worked examples using R for simultaneous mass transfer and chemical reactions......Page 153
Example A: Solving Reactive Transport Equations Using R......Page 157
Examples B: Modeling Framework for Cellular Communities in their Environments......Page 319
P......Page 331
Index......Page 332