Издательство Artech House, 2007, -533 pp.
Modern digital communications correspond to a major change in the design paradigm shift from fixed, hardware-intensive to multiband, multimode, and software-intensive for digital communication radios that a large portion of the signal processing functionality is implemented through programmable digital signal processing (DSP) devices. This provides the ability of the digital communication radios to change their operating bandwidths and modes to accommodate new features and capabilities. The digital communication radios not only reduce analog components of radio frequency (RF) but also emphasize DSP to improve overall receiver flexibility and performance for the RF transceiver, while traditional radios still focus on analog component design. This book attempts to present some important and new developments of signal processing technologies and approaches to the digital communications field that are likely to evolve in the coming decade. Signal processing advances will be the key to the future of the digital communication radios.
This book is a complete resource on signal processing for digital communications, including in-depth coverage of theories, algorithms, system design, analysis, and applications. Based on the author’s extensive research and industry experience, this authoritative book presents an up-to-date and comprehensive treatment of all aspects, including digital, multirate, adaptive, and statistical signal processing technologies for the digital communication radios. This book provides excellent guidance in overcoming critical challenges in the field involving wireless and wireline channel characterization and distortion, smart antennas, link budget, channel capacities, digital RF transceivers, channel estimation and blind identification, multichannel and multicarrier modulation, discrete multitone (DMT) and orthogonal frequency division multiplexing (OFDM), discrete-time timing and carrier recovery synchronization, and adaptive equalizers at communication receivers.
The book offers a coherent treatment of the fundamentals of cutting-edge technologies and presents efficient algorithms and their implementation methods with detailed examples. Packed with over 1,370 equations and more than 100 illustrations, this book offers a one-stop reference to cover a wide range of key topics, from channel capacity, link budget, digital RF systems, smart antenna systems, probability, random variables and stochastic signal processing, sampling theory, pulse shaping and matched filtering, to channel models, estimation and blind identification, multicarrier, fast Fourier transform (FFT)– and filter bank–based OFDM, discrete-time phase locked loop, fractionally spaced, decision feedback, space-time, and diversity equalizers.
Chapter 1 begins with an introduction of a history of communications using electricity; this chapter also provides an overview of digital communication systems that are intended to present a broad topic of signal processing relative to digital communications. In addition, Chapter 1 addresses basic concepts of digital RF system and link budget.
Chapter 2 reviews fundamental theories of probability, random variable, and stochastic signal processing. This chapter presents probability distribution and density and upper bounds on the probability, and it focuses on stochastic signal processing for linear systems, detection theories, and optimum receivers.
Chapter 3 introduces sampling theory, including instantaneous sampling, Nyquist sampling theorem based on time-domain and frequency-domain interpolation formulas, and aliasing. Undersampling, which is often used for intermediate frequency sampling, is described to sample a bandpass signal at a receiver. In addition, this chapter presents stochastic sampling theorem with applications to bandlimited stochastic processes.
Chapter 4 presents Gaussian and bandlimited channel capacities. This chapter also explains a concept of the channel capacities to single-input multiple-output (SIMO), multiple-input single-output (MISO), and multiple-input multiple-output (MIMO) systems.
Chapter 5 discusses smart antenna systems and focuses on different beamforming structures. In addition, this chapter introduces beamforming algorithms for the smart antenna systems using optimization constraint methods.
The focus of Chapter 6 is channel characterizations and distortions that concentrate on wireless and wireline channels. Pulse shaping with methods of raised-cosine pulse and Gaussian shaping pulse is also addressed. Furthermore, this chapter introduces matched filtering in terms of maximum signal-to-noise ratio.
Chapter 7 considers discrete-time channel models and estimations for SISO, SIMO, and MIMO channels. This chapter discusses four methods of maximum likelihood, least square, generalized least square, and minimum mean-square error (MMSE) estimators for the channels. Moreover, this chapter presents adaptive channel estimations and algorithms and their convergence analysis. Finally, this chapter also introduces the use of blind identifications to estimate the channels in the absence of a training sequence.
Chapter 8 describes a set of equalizers at radio receivers and presents their operation theories, including linear and adaptive linear equalizers, fractional spaced and decision feedback equalizers, and space-time MMSE equalizers. In addition, this chapter introduces diversity equalizers based on adaptive Rake receivers.
Chapter 9 turns our attention to multicarrier modulation, DMT, and OFDM for radio receivers. This chapter begins by introducing fundamentals of DMT modulation and then presents FFT–based and filter bank–based OFDM. In addition, this chapter addresses efficient implementation methods of using polyphasebased and maximally decimated FFT filter banks for designing radio transceivers.
Chapter 10 covers discrete-time synchronizations, which describe discrete-time phase locked loop, timing recovery, and carrier recovery. Various methods of timing and carrier recoveries are introduced. These methods include early-late gate, bandedge, decisiondirected, multirate, polyphase filter band, and multicarrier modulation for the discrete-time synchronizations.
Introduction
Probability, Random Variables, and Stochastic Signal Processing
Sampling Theory
Channel Capacity
Smart Antenna Systems
Channel Characterization and Distortion
Channel Estimation and Blind Identification
Adaptive Equalizers in Communication Receivers
Multicarrier Modulation, DMT, and OFDM
Discrete-Time Synchronization
A: The z-Transform
B: Matrix Theory
C: The Discrete Fourier Transform
D: The Fast Fourier Transform
E: Discrete Mathematical Formulas